Skip to main content

Advertisement

Log in

Relationship of diversity and habitat area in North Pacific plastic-associated rafting communities

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Plastic and other anthropogenic debris (e.g., rubber, tar) augment natural floating substrates (e.g., algal rafts, pumice) in the open ocean, allowing “islands” of substrate-associated organisms to persist in an otherwise unsuitable habitat. We examined a total of 242 debris objects collected in the eastern Pacific in 2009 and 2011 (32–39°N, 130–142°W) and the western Pacific in 2012 (19–41°N, 143–156°E). Here, we ask: (a) What taxa are associated with plastic rafts in the North Pacific? and (b) Does the number of taxa associated with plastic debris vary with the size of the debris “island?” We documented 95 rafting taxa from 11 phyla. We identified several potentially invasive plastic-associated rafting taxa, including the coral pathogen Halofolliculina spp. In concordance with classic species–area curves, the number of rafting taxa was positively correlated with the size of the raft. Our findings suggest that diversity patterns on plastic debris are compatible with the concept of island biogeography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Aliani S, Molcard A (2003) Hitch-hiking on floating marine debris: macrobenthic species in the Western Mediterranean Sea. Hydrobiologia 503:59–67. doi:10.1023/B:HYDR.0000008480.95045.26

    Article  Google Scholar 

  • Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62:1596–1605. doi:10.1016/j.marpolbul.2011.05.030

    Article  CAS  Google Scholar 

  • Astudillo JC, Bravo M, Dumont CP, Thiel M (2009) Detached aquaculture buoys in the SE Pacific: potential dispersal vehicles for associated organisms. Aquat Biol 5:219–231. doi:10.3354/ab00151

    Article  Google Scholar 

  • Barnes DKA (2002) Invasions by marine life on plastic debris. Nature 416:808–809. doi:10.1038/416808a

    Article  CAS  Google Scholar 

  • Barnes DKA, Fraser KPP (2003) Rafting by five phyla on man-made flotsam in the Southern Ocean. Mar Ecol Prog Ser 262:289–291. doi:10.3354/meps262289

    Article  Google Scholar 

  • Barnes DKA, Milner P (2005) Drifting plastic and its consequences for sessile organism dispersal in the Atlantic Ocean. Mar Biol 146:815–825. doi:10.1007/s00227-004-1474-8

    Article  Google Scholar 

  • Barnes DKA, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Philos T Roy Soc B 364:1985–1998. doi:10.1098/rstb.2008.0205

    Article  CAS  Google Scholar 

  • Boero F, Bucci C, Colucci AMR et al (2007) Obelia (Cnidaria, Hydrozoa, Campanulariidae): a microphagous, filter-feeding medusa. Mar Ecol 28:178–183. doi:10.1111/j.1439-0485.2007.00164.x

    Article  Google Scholar 

  • Bravo M, Astudillo JC, Lancellotti D et al (2011) Rafting on abiotic substrata: properties of floating items and their influence on community succession. Mar Ecol Prog Ser 439:1–17. doi:10.3354/meps09344

    Article  Google Scholar 

  • Brown DM, Cheng L (1981) New net for sampling the ocean surface. Mar Ecol Prog Ser 5:225–227. doi:10.3354/meps005225

    Article  Google Scholar 

  • Bryan SE, Cook AG, Evans JP et al (2012) Rapid, long-distance dispersal by pumice rafting. PLoS ONE 7:e40583. doi:10.1371/journal.pone.0040583

    Article  CAS  Google Scholar 

  • Caine EA (1977) Feeding mechanisms and possible resource partitioning of the Caprellidae (Crustacea: Amphipoda) from Puget Sound, USA. Mar Biol 42:331–336. doi:10.1007/BF00402195

    Article  Google Scholar 

  • Carpenter EJ, Smith KL (1972) Plastics on the Sargasso Sea surface. Science 175:1240. doi:10.1126/science.175.4027.1240

    Article  CAS  Google Scholar 

  • Carson HS, Nerheim MS, Carroll KA, Eriksen M (2013) The plastic-associated microorganisms of the North Pacific Gyre. Mar Pollut Bull 75:126–132. doi:10.1016/j.marpolbul.2013.07.054

    Article  CAS  Google Scholar 

  • Carter MC, Bishop JDD, Evans NJ, Wood CA (2010) Environmental influences on the formation and germination of hibernacula in the brackish-water bryozoan Victorella pavida Saville Kent, 1870 (Ctenostomata: Victorellidae). J Exp Mar Biol Ecol 383:89–95. doi:10.1016/j.jembe.2009.11.012

    Article  Google Scholar 

  • Choong HHC, Calder DR (2013) Sertularella mutsuensis Stechow, 1931 (Cnidaria: Hydrozoa: Sertulariidae) from Japanese tsunami debris: systematics and evidence for transoceanic dispersal. BioInvasions Rec 2:33–38

    Article  Google Scholar 

  • Clarkin E, Maggs CA, Allcock AL, Johnson MP (2012) Environment, not characteristics of individual algal rafts, affects composition of rafting invertebrate assemblages in Irish coastal waters. Mar Ecol Prog Ser 470:31–40

    Article  Google Scholar 

  • Croquer A, Bastidas Carolina, Lipscomb D (2006) Folliculinid ciliates: a new threat to Caribbean corals? Dis Aquat Org 69:75–78. doi:10.3354/dao069075

    Article  Google Scholar 

  • Dameron OJ, Parke M, Albins MA, Brainard R (2007) Marine debris accumulation in the Northwestern Hawaiian Islands: an examination of rates and processes. Mar Pollut Bull 54:423–433. doi:10.1016/j.marpolbul.2006.11.019

    Article  CAS  Google Scholar 

  • Davidson TM (2012) Boring crustaceans damage polystyrene floats under docks polluting marine waters with microplastic. Mar Pollut Bull 64:1821–1828. doi:10.1016/j.marpolbul.2012.06.005

    Article  CAS  Google Scholar 

  • Dempster T, Kingsford M (2003) Homing of pelagic fish to fish aggregation devices (FADs): the role of sensory cues. Mar Ecol Prog Ser 258:213–222. doi:10.3354/meps258213

    Article  Google Scholar 

  • Derraik JGB (2002) The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull 44:842–852. doi:10.1016/S0025-326X(02)00220-5

    Article  CAS  Google Scholar 

  • Development Core Team R (2012) R: a language and environment for statistical computing. Austria, Vienna

    Google Scholar 

  • Donlan CJ, Nelson PA (2003) Observations of invertebrate colonized flotsam in the eastern tropical Pacific, with a discussion of rafting. B Mar Sci 72:231–240

    Google Scholar 

  • Emerson W, Chaney H (1995) A zoogeographic review of the Cypraeidae (Mollusca, Gastropoda) occurring in the eastern Pacific Ocean. Veliger 38:8–21

    Google Scholar 

  • Evans F (1958) Growth and maturity of the barnacles Lepas hillii and Lepas anatifera. Nature 182:1245–1246. doi:10.1038/1821245b0

    Article  Google Scholar 

  • Farrapeira CMR (2011) Invertebrados macrobentônicos detectados na costa brasileira transportados por resíduos flutuantes sólidos abiogênicos. Revista da Gestão Costeira Integrada 11:85–96

    Article  Google Scholar 

  • Fofonoff P, Ruiz G, Steves B, Carlton J (2012) National Exotic Marine and Estuarine Species Information System. In: Smithsonian Environmental Research Center. http://invasions.si.edu/nemesis/. Accessed 26 Oct 2012

  • Gewin V (2013) Tsunami triggers invasion concerns. Nature 495:13–14. doi:10.1038/495013a

    Article  CAS  Google Scholar 

  • Godwin LS, Harris L, Charette A, Moffitt R (2008) The marine invertebrate species associated with the biofouling of derelict fishing gear in the Pāpahanaumokuākea–Marine National Monument: a focus on marine non-native species transport. p 26

  • Goldstein MC, Goodwin DS (2013) Gooseneck barnacles (Lepas spp.) ingest microplastic debris in the North Pacific Subtropical Gyre. PeerJ 1:184. doi:10.7717/peerj.184

    Article  Google Scholar 

  • Goldstein MC, Rosenberg M, Cheng L (2012) Increased oceanic microplastic debris enhances oviposition in an endemic pelagic insect. Biol Lett 8:817–820. doi:10.1098/rsbl.2012.0298

    Article  Google Scholar 

  • Goldstein MC, Titmus AJ, Ford M (2013) Scales of spatial heterogeneity of plastic marine debris in the northeast Pacific ocean. PLoS ONE 8:e80020. doi:10.1371/journal.pone.0080020

    Article  Google Scholar 

  • Hammer J, Kraak HS Michiel, Parsons John R (2012) Plastics in the marine environment: the dark side of a modern gift. Rev Environ Contam T 220:1–44. doi:10.1007/978-1-4614-3414-6_1

    Google Scholar 

  • He F, Legendre P (1996) On species-area relations. Am Nat 148:719–737

    Article  Google Scholar 

  • Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M (2012) Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ Sci Technol 46:3060–3075. doi:10.1021/es2031505

    Google Scholar 

  • Hirosaki Y (1960) Observations and experiments on the behavior of fishes toward floating objects in aquarium. J Fac Sci Hokkaido Univ 14:320–326

    Google Scholar 

  • Hobday AJ (2000) Persistence and transport of fauna on drifting kelp (Macrocystis pyrifera (L.) C. Agardh) rafts in the Southern California Bight. J Exp Mar Biol Ecol 253:75–96. doi:10.1016/S0022-0981(00)00250-1

    Article  Google Scholar 

  • Hoeksema BW, Roos PJ, Cadee GC (2012) Trans-Atlantic rafting by the brooding reef coral Favia fragum on man-made flotsam. Mar Ecol Prog Ser 445:209–218. doi:10.3354/meps09460

    Article  Google Scholar 

  • Ibrahim S, Ambak MA, Shamsudin L, Samsudin MZ (1996) Importance of fish aggregating devices (FADs) as substrates for food organisms of fish. Fish Res 27:265–273. doi:10.1016/0165-7836(96)00473-0

    Article  Google Scholar 

  • Ingólfsson A (1995) Floating clumps of seaweed around Iceland: natural microcosms and a means of dispersal for shore fauna. Mar Biol 122:13–21. doi:10.1007/BF00349273

    Article  Google Scholar 

  • Jacobsen JK, Massey L, Gulland F (2010) Fatal ingestion of floating net debris by two sperm whales (Physeter macrocephalus). Mar Pollut Bull 60:765–767. doi:10.1016/j.marpolbul.2010.03.008

    Article  CAS  Google Scholar 

  • Karl DM, Bidigare RR, Letelier RM (2001) Long-term changes in plankton community structure and productivity in the North Pacific Subtropical Gyre: the domain shift hypothesis. Deep Sea Res Pt II 48:1449–1470. doi:10.1016/S0967-0645(00)00149-1

  • Law KL, Moret-Ferguson S, Maximenko NA et al (2010) Plastic accumulation in the North Atlantic Subtropical Gyre. Science 329:1185–1188. doi:10.1126/science.1192321

    Article  CAS  Google Scholar 

  • Lebreton LC-M, Borrero JC (2013) Modeling the transport and accumulation floating debris generated by the 11 March 2011 Tohoku tsunami. Mar Pollut Bull 66:53–58. doi:10.1016/j.marpolbul.2012.11.013

    Article  CAS  Google Scholar 

  • Lesser MP, Shumway SE, Cucci T, Smith J (1992) Impact of fouling organisms on mussel rope culture: interspecific competition for food among suspension-feeding invertebrates. J Exp Mar Biol Ecol 165:91–102. doi:10.1016/0022-0981(92)90291-H

    Article  Google Scholar 

  • Lomolino MV (2000) Ecology’s most general, yet protean pattern: the species-area relationship. J Biogeogr 27:17–26

    Article  Google Scholar 

  • Lovely EC (2005) The life history of Phoxichilidium tubulariae (Pycnogonida: Phoxichilidiidae). Northeastern Nat 12:77–92. doi:10.1656/1092-6194(2005)012[0077:TLHOPT]2.0.CO;2

    Google Scholar 

  • MacArthur RH, Wilson EO (1963) An equilibrium theory of insular zoogeography. Evolution 17:373–387

    Article  Google Scholar 

  • Majer AP, Vedolin MC, Turra A (2012) Plastic pellets as oviposition site and means of dispersal for the ocean-skater insect Halobates. Mar Pollut Bull 64:1143–1147. doi:10.1016/j.marpolbul.2012.03.029

    Article  CAS  Google Scholar 

  • Maso M, Garces E, Pages F, Camp J (2003) Drifting plastic debris as a potential vector for dispersing harmful algal bloom (HAB) species. Sci Mar 67:107–111

    Article  Google Scholar 

  • Matassa CM, Trussell GC (2011) Landscape of fear influences the relative importance of consumptive and nonconsumptive predator effects. Ecology 92:2258–2266. doi:10.1890/11-0424.1

    Article  Google Scholar 

  • Matthews DC (1963) Hawaiian records of folliculinids (Protozoa) from submerged wood. Pac Sci 17:438–443

    Google Scholar 

  • McDermid KJ, McMullen TL (2004) Quantitative analysis of small-plastic debris on beaches in the Hawaiian archipelago. Mar Pollut Bull 48:790–794

    Article  CAS  Google Scholar 

  • Mook DH (1981) Removal of suspended particles by fouling communities. Mar Ecol Prog Ser 5:279–281

    Article  Google Scholar 

  • Moret-Ferguson S, Law KL, Proskurowski G et al (2010) The size, mass, and composition of plastic debris in the western North Atlantic Ocean. Mar Pollut Bull 60:1873–1878. doi:10.1016/j.marpolbul.2010.07.020

    Article  CAS  Google Scholar 

  • Nelson PA (2003) Marine fish assemblages associated with fish aggregating devices (FADs): effects of fish removal, FAD size, fouling communities, and prior recruits. Fish B-NOAA 101:835–850

    Google Scholar 

  • Palmer C, Gates R (2010) Skeletal eroding band in Hawaiian corals. Coral Reefs 29:469. doi:10.1007/s00338-010-0597-2

    Article  Google Scholar 

  • Pham PH, Jung J, Lumsden JS et al (2012) The potential of waste items in aquatic environments to act as fomites for viral haemorrhagic septicaemia virus. J Fish Dis 35:73–77. doi:10.1111/j.1365-2761.2011.01323.x

    Article  CAS  Google Scholar 

  • Pister B (2009) Urban marine ecology in southern California: the ability of riprap structures to serve as rocky intertidal habitat. Mar Biol 156:861–873. doi:10.1007/s00227-009-1130-4

    Article  Google Scholar 

  • Pratt MC (2008) Living where the flow is right: how flow affects feeding in bryozoans. Integr Comp Biol 48:808–822. doi:10.1093/icb/icn052

    Article  Google Scholar 

  • Rasband WS (2012) ImageJ. U. S. National Institutes of Health, Bethesda MD. http://imagej.nih.gov/ij/

  • Riemann-Zürneck K (1998) How sessile are sea anemones? A review of free-living forms in the Actiniaria (Cnidaria: Anthozoa). Mar Ecol 19:247–261. doi:10.1111/j.1439-0485.1998.tb00466.x

    Article  Google Scholar 

  • Rodriguez SR, Ojeda FP, Inestrosa NC (1993) Settlement of benthic marine invertebrates. Mar Ecol Prog Ser 97:193–207

    Article  Google Scholar 

  • Rodriguez S, Cróquer A, Guzmán H, Bastidas C (2009) A mechanism of transmission and factors affecting coral susceptibility to Halofolliculina sp. infection. Coral Reefs 28:67–77. doi:10.1007/s00338-008-0419-y

    Article  Google Scholar 

  • Ryan PG (2013) A simple technique for counting marine debris at sea reveals steep litter gradients between the Straits of Malacca and the Bay of Bengal. Mar Pollut Bull 69:128–136. doi:10.1016/j.marpolbul.2013.01.016

    Article  CAS  Google Scholar 

  • Sheldon RW, Prakash A, Sutcliffe WH (1972) The size distribution of particles in the ocean. Limnol Oceangr 17:327–340

    Article  Google Scholar 

  • Simberloff D (1976) Experimental zoogeography of islands: effects of island size. Ecology 57:629–648

    Article  Google Scholar 

  • Thiel M, Gutow L (2005a) The ecology of rafting in the marine environment I: the floating substrata. Oceanogr Mar Biol 42:181–263

    Google Scholar 

  • Thiel M, Gutow L (2005b) The ecology of rafting in the marine environment II: the rafting organisms and community. Oceanogr Mar Biol 43:279–418

    Article  Google Scholar 

  • Thiel M, Haye PA (2006) The ecology of rafting in the marine environment III: biogeographical and evolutionary consequences. Oceanogr Mar Biol 44:323–429

    Google Scholar 

  • Titmus AJ, Hyrenbach KD (2011) Habitat associations of floating debris and marine birds in the North East Pacific Ocean at coarse and meso spatial scales. Mar Pollut Bull 62:2496–2506. doi:10.1016/j.marpolbul.2011.08.007

    Article  CAS  Google Scholar 

  • Tsikhon-Lukanina EA, Reznichenko OG, Nikolaeva GG (2001) Ecology of invertebrates on the oceanic floating substrata in the northwest Pacific ocean. Oceanology 41:525–530

    Google Scholar 

  • Tyrrell MC, Byers JE (2007) Do artificial substrates favor nonindigenous fouling species over native species? J Exp Mar Biol Ecol 342:54–60

    Article  Google Scholar 

  • U.S. Environmental Protection Agency (2011) Marine Debris in the North Pacific: A summary of existing information and identification of data gaps. p 23

  • Vassilopoulou V, Siapatis A, Christides G, Bekas P (2004) The biology and ecology of juvenile pilotfish (Naucrates ductor) associated with fish aggregating devices (FADs) in eastern Mediterranean waters. Mediterr Mar Sci 5:61–70. doi:10.12681/mms.211

    Google Scholar 

  • Venrick EL, Backman TW, Bartram WC et al (1973) Man-made objects on the surface of the central North Pacific Ocean. Nature 241:271. doi:10.1038/241271a0

    Article  Google Scholar 

  • Whitehead TO, Biccard A, Griffiths CL (2011) South African pelagic goose barnacles (Cirripedia, Thoracica): substratum preferences and influence of plastic debris on abundance and distribution. Crustaceana 84:635–649. doi:10.1163/001121611X574290

    Article  Google Scholar 

  • Winston JE, Gregory MR, Stevens L (1997) Encrusters, epibionts, and other biota associated with pelagic plastics: a review of biological, environmental, and conservation issues. In: Coe JM, Rogers DB (eds) Marine debris: sources, impact and solutions. Springer, New York, pp 81–98

    Chapter  Google Scholar 

  • Wong CS, Green DR, Cretney WJ (1974) Quantitative tar and plastic waste distributions in Pacific Ocean. Nature 247:30–32. doi:10.1038/247030a0

    Article  CAS  Google Scholar 

  • Ye S, Andrady AL (1991) Fouling of floating plastic debris under Biscayne Bay exposure conditions. Mar Pollut Bull 22:608–613. doi:10.1016/0025-326X(91)90249-R

    Article  Google Scholar 

  • Zettler ER, Mincer TJ, Amaral-Zettler LA (2013) Life in the “Plastisphere”: microbial communities on plastic marine debris. Environ Sci Technol 47:7137–7146. doi:10.1021/es401288x

    CAS  Google Scholar 

Download references

Acknowledgments

Funding for the 2009 SEAPLEX cruise was provided by University of California Ship Funds, Project Kaisei/Ocean Voyages Institute, AWIS-San Diego, and NSF IGERT Grant No. 0333444. The 2011 and 2012 expeditions were made possible through collaboration between the 5 Gyres Institute, Algalita Marine Research Institute, and the University of Hawaii, Hilo. The Sea Dragon was made available by Pangaea Explorations. M.C.G. was supported by NSF GK-12 Grant No. 0841407 and donations from Jim and Kris McMillan, Jeffrey and Marcy Krinsk, Lyn and Norman Lear, Ellis Wyer, and the Petersen Charitable Foundation. Funding for H.S.C. was provided by the Will J. Reid Foundation through a grant to K. McDermid. Laboratory supplies, support, and some analytical equipment for the 2009 samples were supplied by the SIO Pelagic Invertebrate Collection and the California Current Ecosystem LTER site supported by NSF. Many thanks to the captain and crew of the R/V New Horizon and Sea Dragon for their assistance in debris collection and many other logistics. We are grateful to H. Cha, M. DeMaintenon, M. Forrest, E. Moore, L. Sala, A. Townsend, and J. Winston for their assistance with taxonomy and to S. Strutt for her work in the laboratory. Comments from L. Gutow, M.R. Landry, M.D. Ohman, M. Thiel, and an anonymous reviewer significantly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam C. Goldstein.

Additional information

Communicated by F. Bulleri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 304 kb)

Supplementary material 2 (XLSX 69 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldstein, M.C., Carson, H.S. & Eriksen, M. Relationship of diversity and habitat area in North Pacific plastic-associated rafting communities. Mar Biol 161, 1441–1453 (2014). https://doi.org/10.1007/s00227-014-2432-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-014-2432-8

Keywords

Navigation