Marine Biology

, Volume 161, Issue 3, pp 681–696 | Cite as

Epibenthic macrofaunal community response after a mega-earthquake and tsunami in a shallow bay off central-south Chile

  • Eduardo Hernández-MirandaEmail author
  • José Cisterna
  • Ernesto Díaz-Cabrera
  • Rodrigo Veas
  • Renato A. Quiñones
Original Paper


On February 27, 2010, the world’s sixth strongest earthquake on record (8.8 M w) and tsunami hit central Chile. We assess the response of the epibenthic macrofaunal community following this event in Coliumo Bay, one of the areas most affected by this mega-perturbation. The indicators of aggregate and compositional variability show that 3 years after this event, the community appears to have undergone the following dynamics: (1) At an inter-annual timescale, the community (both in density and biomass) shifted through different structures with apparent directionality; (2) Oceanographic and biological seasonality had a strong cyclical influence on the inter-annual community response; (3) There was spatial homogenization of the community over time (i.e., recovery of diversity), probably promoted by the ecological functionality of scavenger species (i.e., crab Cancer coronatus and snail Nassarius spp.) and by the proportional increase in non-dominant species; (4) Bathymetry and bottom dissolved oxygen also played significant roles in the spatial structure of this community; (5) Three years after the perturbation, total density and total community biomass were still considerably below those described under unperturbed conditions, mainly associated with the decrease in density and biomass of dominant species. Therefore, in spite of this apparent community compositional recovery, the aggregate variability currently remains below the levels reported prior to the effect of the mega-earthquake and tsunami. These results provide evidence that supports both the Cross-Scale Resilience Hypothesis and the Response Diversity Hypothesis.


Biomass Community Density Adjacent Coastal Area Resemblance Measure Total Community Biomass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was funded by FONDECYT 11100334 and 1130868 to E. Hernández-Miranda and by the Programa de Investigación Marina de Excelencia (PIMEX) of the Faculty of Natural and Oceanographic Sciences (University of Concepción, Chile). J. Cisterna was funded by a scholarship from CONICYT (Beca Magister 2010–2012) and by FONDECYT 11100334. R. A. Quiñones and E. Hernández-Miranda received additional funding from the Interdisciplinary Center for Aquaculture Research (INCAR; FONDAP Project Nº15110027). The authors would like to thank three anonymous reviewers and the Associated Editor Dr. M. G. Chapman for their valuable comments and suggestions to improve the quality of the paper.

Supplementary material

227_2013_2370_MOESM1_ESM.docx (68 kb)
Supplementary material 1 (DOCX 68 kb)
227_2013_2370_MOESM2_ESM.docx (66 kb)
Supplementary material 2 (DOCX 65 kb)


  1. Ahumada RB, Arcos DF (1976) Descripción de un fenómeno de varada y mortandad de peces en la Bahía de Concepción, Chile. Revista Comisión Permanente del Pacífico Sur 5:101–111Google Scholar
  2. Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate dispersion as a measure of beta diversity. Ecol Lett 9:683–693CrossRefGoogle Scholar
  3. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, PlymouthGoogle Scholar
  4. Anderson MJ, Crist TO, Chase JM, Vellend M, Inouye BD, Freestone AL, Sanders NJ, Cornell HV, Comita LS, Davies KF, Harrison SP, Kraft NJB, Stegen JC, Swenson NG (2011) Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol Lett 14:19–28CrossRefGoogle Scholar
  5. Beisner B, Haydon D, Cuddington K (2003) Alternative stable states in ecology. Front Ecol Environ 1(7):376–382CrossRefGoogle Scholar
  6. Callaway R, Engelhard GH, Dann J, Cotter J, Rumohr H (2007) A century of North Sea epibenthos and trawling: comparison between 1902–1912, 1982–1985 and 2000. Mar Ecol Prog Ser 197:27–43CrossRefGoogle Scholar
  7. Castilla JC (1988) Earthquake-caused coastal uplift and its effects on rocky intertidal kelp communities. Science 242:440–443CrossRefGoogle Scholar
  8. Castilla JC, Manríquez P, Camaño A (2010) Effects of rocky shore coseismic uplift and the 2010 Chilean mega-earthquake on intertidal biomarkers species. Mar Ecol Prog Ser 418:17–23CrossRefGoogle Scholar
  9. Castro LR, Salinas GR, Hernández EH (2000) Environmental influences on winter spawning of the anchoveta Engraulis ringens off Central Chile. Mar Ecol Prog Ser 197:247–258CrossRefGoogle Scholar
  10. Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, PlymouthGoogle Scholar
  11. Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. PRIMER-E, PlymouthGoogle Scholar
  12. Daneri G, Dellarossa V, Quiñones RA, Jacob B, Montero P, Ulloa O (2000) Primary production and community respiration in the Humboldt Current System off Chile and associated oceanic areas. Mar Ecol Prog Ser 197:41–49CrossRefGoogle Scholar
  13. Daneri G, Lizárraga L, Montero P, González HE, Tapia FJ (2012) Wind forcing and short-term variability of phytoplankton and heterotrophic bacterioplankton in the coastal zone off Concepción upwelling system (Central Chile). Prog Oceanogr 92(1):92–96CrossRefGoogle Scholar
  14. Díaz-Cabrera E, Hernández-Miranda E, Hernández CE, Quiñones RA (2012) Mesoscale β diversity and spatial nestedness of crustacean larvae in the coastal zone off central southern Chile: population and community implications. ICES J Mar Sci 69(3):429–438CrossRefGoogle Scholar
  15. Elmqvist T, Folke C, Nystrôm M, Peterson G, Bengtsson J, Walker B, Norberg J (2003) Response diversity, ecosystem change, and resilience. Front Ecol Environ 1:488–494CrossRefGoogle Scholar
  16. Farías M, Vargas G, Tassara A, Carretier S, Baize S, Melnick D, Bataille K (2010) Land-level changes produced by the Mw 8.8 2010 Chilean Earthquake. Science 329(5994):916Google Scholar
  17. Fossing H, Gallardo VA, Jørgensen BB, Hüttel M, Nielsen LP, Schulz H, Canfield DE, Forster S, Glud RN, Gundersen JK, Küver J, Ramsing NB, Teske A, Thamdrup B, Ulloa O (1995) Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca. Nature 374:713–715CrossRefGoogle Scholar
  18. Griffiths HJ, Linse K, Barnes DKA (2008) Distribution of macrobenthic taxa across the Scotia Arc, southern ocean. Antarctic Sci 20(3):213–226CrossRefGoogle Scholar
  19. Gutiérrez D, Gallardo VA, Mayor S, Neira C, Vasquez C, Sellanes J, Rivas M, Baltazar M (2000) Bioturbation potential of macrofauna in sublittoral organic-rich sediments off central Chile: spatial and temporal variation under “El Niño” 1997/98. Mar Ecol Prog Ser 202:81–99CrossRefGoogle Scholar
  20. Halford AR, Perret J (2009) Patterns of recovery in catastrophically disturbed reef fish assemblages. Mar Ecol Prog Ser 383:261–272CrossRefGoogle Scholar
  21. Hernández-Miranda E, Palma AT, Ojeda FP (2003) Larval fish assemblages in nearshore coastal waters off Central Chile: temporal and spatial patterns. Estuar Coast Shelf Sci 56:1075–1092CrossRefGoogle Scholar
  22. Hernández-Miranda EH, Veas R, Labra FA, Araneda A, Carrasco FD, Salamanca M, Rojas JM, Fariña JM, Quiñones RA (2009) Biodiversidad del ecosistema costero adyacente a la desembocadura del río Itata. In: Parra O, Castilla JC, Romero H, Quiñones RA, Camaño A (eds) La cuenca Hidrográfica del Río Itata. Aportes científicos para su gestión sustentable. Ediciones Universidad de Concepción, Chile, pp 143–159Google Scholar
  23. Hernández-Miranda E, Quiñones RA, Aedo G, Valenzuela A, Mermoud N, Roman C, Yañez F (2010) A major fish stranding caused by natural hypoxic event in a shallow bay of the eastern South Pacific Ocean. J Fish Biol 76:1543–1564CrossRefGoogle Scholar
  24. Hernández-Miranda E, Veas R, Labra FA, Salamanca M, Quiñones RA (2012a) Response of the epibenthic macrofaunal community to a strong upwelling-driven hypoxic event in a shallow bay of the southern Humbold Current System. Mar Environ Res 79:16–28CrossRefGoogle Scholar
  25. Hernández-Miranda E, Quiñones RA, Aedo G, Díaz-Cabrera E, Cisterna J (2012b) The impact of a strong natural hypoxic event on the toadfish Aphos porosus in Coliumo Bay, south-central Chile. Rev Biol Mar Oceanogr 47(3):475–487CrossRefGoogle Scholar
  26. Holling CS (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1–24CrossRefGoogle Scholar
  27. Hughes T, Bellwood D, Folke C, Steneck R, Wilson J (2005) New paradigms for supporting the resilience of marine ecosystems. Trends Ecol Evol 20(7):380–386CrossRefGoogle Scholar
  28. Huston M (1979) A general hypothesis of species diversity. Am Nat 113:81–101CrossRefGoogle Scholar
  29. Huston M (1994) Biological diversity: the coexistence of species on changing landscapes. Cambridge University Press, CambridgeGoogle Scholar
  30. Jaramillo E, Dugan J, Hubbard D, Melnick D, Manzano M, Duarte C, Campos C, Sanchez R (2012) Ecological implications of extreme events: footprints of the 2010 Earthquake along the Chilean Coast. PLoS ONE 7(5):e35348. doi: 10.1371/journal.pone.0035348 CrossRefGoogle Scholar
  31. Laudien J, Rojo ME, Oliva ME, Arntz WE, Thatje S (2007) Sublittoral soft bottom communities and diversity of Mejillones Bay in northern Chile (Humbold Current Upwelling System). Helgol Mar Res 61:103–116CrossRefGoogle Scholar
  32. Lomovasky B, Firstater F, Gamarra A, Mendo J, Iribarne O (2010) Macro benthic community assemblage before and after the 2007 tsunami and earthquake at Parakas Bay, Peru. J Sea Res 65:205–212CrossRefGoogle Scholar
  33. Loreau M, Behera N (1999) Phenotypic diversity and stability of ecosystem processes. Theor Popul Biol 56:29–47CrossRefGoogle Scholar
  34. MacArthur R (1972) Geographical ecology: patterns in the distribution of species. Harper & Row Publishers, New YorkGoogle Scholar
  35. MacArthur R, Wilson OE (1967) The theory of island biogeography. Princeton University Press, PrincetonGoogle Scholar
  36. Madariaga R, Métois M, Vigny C, Campos J (2010) Central Chile finally breaks. Science 9(328):181–182CrossRefGoogle Scholar
  37. Marin A, Gelcich S, Araya G, Olea G, Espíndola M, Castilla JC (2010) The 2010 tsunami in Chile: devastation and survival of coastal small-scale fishing communities. Mar Policy 34:1381–1384CrossRefGoogle Scholar
  38. McKnight DG, Probert PK (1997) Epibenthic communities on the Chatham Rise, New Zealand. New Zeal J Mar Fresh 31:505–513CrossRefGoogle Scholar
  39. Meilianda E, Dohmen-Janssen CM, Maathius BHP, Hulscher SJMH, Mulder JPM (2010) Short-term morphological responses and developments of Banda Aceh coast, Sumatra Island, Indonesia after the tsunami on 26 December 2004. Mar Geol 275:96–109CrossRefGoogle Scholar
  40. Micheli F, Cottingham KL, Bascompte J, Bjornstad ON, Eckert GL, Fisher JM, Keitt TH, Kendall BE, Klug JL, Rusak JA (1999) The dual nature of community variability. Oikos 85(1):161–169CrossRefGoogle Scholar
  41. Nelson AR, Manley W (1992) Holocene coseismic and aseismic uplift of Isla Mocha, south-central Chile. Quatern Int 15–16:61–76CrossRefGoogle Scholar
  42. Noda A, Katayama H, Sagayama T, Suga K, Uchida Y, Satake K, Abe K, Okamura Y (2007) Evaluation of Tsunami impacts on shallow marine sediments: an example from the tsunami caused by the 2003 Tokachi-oki earthquake, northern Japan. Sediment Geol 200:314–327CrossRefGoogle Scholar
  43. O’Neill RV (2001) Is it time to bury the ecosystem concept? (Whit full military honors, of course!). Ecology 82:3275–3284Google Scholar
  44. Palma A, Pardo LM, Veas R, Cartes C, Silva M, Manríquez K, Díaz A, Muñoz C, Ojeda FP (2006) Coastal brachyuran decapods: settlement and recruitment under contrasting coastal geometry conditions. Mar Ecol Prog Ser 316:139–153CrossRefGoogle Scholar
  45. Peterson G, Allen C, Holling CS (1998) Ecological resilience, biodiversity, and scale. Ecosystems 1:6–18CrossRefGoogle Scholar
  46. Poulin E, Palma AT, Leiva G, Hernández E, Martinez P, Navarrete SA, Castilla JC (2002) Temporal and spatial variation in the distribution of epineustonic component larvae of Concholepas concholepas along the central coast of Chile. Mar Ecol Prog Ser 229:95–104CrossRefGoogle Scholar
  47. Quiñones RA, Gutiérrez MH, Daneri G, Gutiérrez DA, González HE, Chávez F (2010) Pelagic carbon fluxes in the Humboldt Current System. In: Liu KK, Atkinson L, Quiñones RA, Talaue-McManus L (eds) Carbon and nutrient fluxes in global continental margins: a global synthesis. IGBP Series Book, Springer, New York. pp 44–64Google Scholar
  48. Ranjan RK, Routh J, Ramanathan A (2010) Bulk organic matter characteristics in the Pichavaram mangrove-estuarine complex, south-eastern India. App Geochem 25:1176–1186CrossRefGoogle Scholar
  49. Ruegg JC, Rudloff A, Vigny C, Madariaga R, Chabalier JB, Campos J, Kausel E, Barrientos S, Dimitrov V (2009) Interseismic strain accumulation measured by GPS in the seismic gap between Constitución and Concepción in Chile. Phys Earth Planet In 175:78–85CrossRefGoogle Scholar
  50. Shaffer G, Hormazabal S, Pizarro G, Salinas S (1999) Seasonal and inter annual variability of currents and temperature off Central Chile. J Geophys Res 104:29951–29961CrossRefGoogle Scholar
  51. Sobarzo M, Bravo L, Donoso D, Garcés-Vargas J, Schneider W (2007) Coastal upwelling and seasonal cycles that influence the water column over the continental shelf off Central Chile. Prog Oceanogr 75:363–382CrossRefGoogle Scholar
  52. Sobarzo M, Garcés-Vargas J, Bravo L, Tassara A, Quiñones RA (2012) Observing sea level and current anomalies driven by mega thrust slope-shelf tsunami: the event on February 27, 2010 in Central Chile. Cont Shelf Res 49:44–55CrossRefGoogle Scholar
  53. Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720CrossRefGoogle Scholar
  54. Turner M (2010) Disturbance and landscape dynamics in a changing world. Ecology 91:2833–2849CrossRefGoogle Scholar
  55. USGS (2013) Earthquake hazards program. Accessed 18 January 2013
  56. Vargas G, Farías M, Carretier S, Tassara A, Baize S, Melnick D (2011) Coastal uplift and tsunami effects associated to the 2010 Mw 8.8 Maule earthquake in Central Chile. And Geol 38(1):219–238Google Scholar
  57. Veas R, Hernández-Miranda E, Quiñones RA, Díaz-Cabrera E, Rojas JM, Fariña JM (2013) The influence of environmental factors on the abundance and recruitment of the sand crab Emerita analoga (Stimpson 1857): a source-sink dynamics? Mar Environ Res 89:9–20CrossRefGoogle Scholar
  58. Vigny C, Socquet A, Peyrat S, Ruegg C, Métois M, Madariaga R, Morvan S, Lancieri M, Laccasin R, Campos J, Carrizo D, Bejar-Pizarro M, Barrientos S, Armijo R, Aranda C, Valderas-Bermejo M, Ortega I, Bondoux F, Baize S, Lyon-Caen H, Pavez A, Vilotte JP, Bevis M, Brooks B, Smalley R, Parra H, Baez J, Blanco M, Cimbaro S, Kendrick E (2011) The 2010 Mw 8.8 Maule mega-thrust earthquake of Central Chile, monitored by GPS. Science 332(6036):1417–1421CrossRefGoogle Scholar
  59. Walker B, Kinzig A, Langridge J (1999) Plant attribute diversity, resilience, and ecosystem function: the nature of significance of dominant and minor species. Ecosystems 2:95–113CrossRefGoogle Scholar
  60. Whanpetch N, Nakaoka M, Mukay H, Suzuki T, Nojima S, Kawai T, Aryuthaka C (2010) Temporal changes in benthic communities of sea grass beds impacted by a tsunami in the Andaman Sea, Thailand. Estuar Coast Shelf Sci 87:246–252CrossRefGoogle Scholar
  61. Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21:213–251CrossRefGoogle Scholar
  62. Yan Z, Tang D (2008) Changes in suspended sediments associated with 2004 Indian Ocean Tsunami. Adv Space Res 43:89–95CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Eduardo Hernández-Miranda
    • 1
    • 2
    Email author
  • José Cisterna
    • 1
    • 3
  • Ernesto Díaz-Cabrera
    • 1
  • Rodrigo Veas
    • 1
  • Renato A. Quiñones
    • 1
    • 2
    • 3
  1. 1.Programa de Investigación Marina de Excelencia (PIMEX), Facultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
  2. 2.Interdisciplinary Center for Aquaculture Research (INCAR), Casilla 160-CUniversidad de ConcepciónConcepciónChile
  3. 3.Graduate Program in Oceanography, Department of Oceanography, Casilla 160-CUniversity of ConcepciónConcepciónChile

Personalised recommendations