Contrasting diel patterns in vertical movement and locomotor activity of whale sharks at Ningaloo Reef

Abstract

Activity patterns of animals often relate to environmental variables such as food availability and predation pressure. Technological advances are providing us with new tools to monitor and better understand these activity patterns. We used animal-attached data loggers recording acceleration and depth to compare activity patterns and vertical habitat use of whale sharks (Rhincodon typus) at Ningaloo Reef, Western Australia. Whale sharks showed a moderate reverse diel vertical migration but exhibited a clear crepuscular pattern in locomotory activity. Peak activity occurred at sunset, whereas vertical movement peaked prior to this. Typical ram surface filter feeding could be identified and occurred primarily during sunset and the first hours of night. At such times, direct observations indicated whale sharks were feeding on tropical krill swarms. Kinematic analysis of postural data and data from vertical movement suggests that whale sharks at Ningaloo spend ~8 min per day actively ram surface filter feeding. Considering the high biomass present in krill schools, it is estimated that whale sharks at Ningaloo have a similar energy intake as those at other aggregation sites. Diel patterns in activity and diving behaviour suggest that whale sharks have tuned their diving behaviour in anticipation of the formation of these high-density patches which appear to only be periodically, but predictably available at sunset. Our results confirm that diel patterns in vertical habitat selection and vertical movements do not necessarily reflect patterns in activity and foraging behaviour. Direct quantification of activity and behaviour is required in gaining accurate representation of diel activity patterns.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Block B, Jonsen I, Jorgensen S, Winship A, Shaffer S, Bograd S, Hazen E, Foley D, Breed G, Harrison AL (2011) Tracking apex marine predator movements in a dynamic ocean. Nature 475:86–90

    Article  CAS  Google Scholar 

  2. Boustany AM, Davis SF, Pyle P, Anderson SD, Le Boeuf BJ, Block BA (2002) Satellite tagging: expanded niche for white sharks. Nature 415:35–36

    Article  CAS  Google Scholar 

  3. Campana SE, Dorey A, Fowler M, Joyce W, Wang Z, Wright D, Yashayaev I (2011) Migration pathways, behavioural thermoregulation and overwintering grounds of blue sharks in the Northwest Atlantic. PLoS One 6:e16854

    Article  CAS  Google Scholar 

  4. Carey FG, Scharold JV (1990) Movements of blue sharks (Prionace glauca) in depth and course. Mar Biol 106:329–342

    Article  Google Scholar 

  5. Clark TD, Sandblom E, Hinch SG, Patterson DA, Frappell PB, Farrell AP (2010) Simultaneous biologging of heart rate and acceleration, and their relationships with energy expenditure in free-swimming sockeye salmon (Oncorhynchus nerka). J Comp Physiol B 180:673–684. doi:10.1007/s00360-009-0442-5

    Article  Google Scholar 

  6. Croxall J, Everson I, Kooyman G, Ricketts C, Davis R (1985) Fur seal diving behaviour in relation to vertical distribution of krill. J Anim Ecol 54:1–8

    Article  Google Scholar 

  7. de la Parra Venegas R, Hueter R, Cano JG, Tyminski J, Remolina JG, Maslanka M, Ormos A, Weigt L, Carlson B, Dove A (2011) An unprecedented aggregation of whale sharks, Rhincodon typus, in Mexican Coastal waters of the Caribbean Sea. PLoS One 6:e18994

    Article  CAS  Google Scholar 

  8. Folt CL, Burns CW (1999) Biological drivers of zooplankton patchiness. Trends Ecol Evol 14:300–305

    Article  Google Scholar 

  9. Gleiss AC, Gruber SH, Wilson RP (2009a) Multi-channel data-logging: towards determination of behaviour and metabolic rate in free-swimming sharks. In: Nielsen JL, Arrizabalaga H, Fragoso N, Hobday A, Lutcavage M, Sibert J (eds) Tagging and tracking of marine animals with electronic devices. Springer, New York, pp 213–228

    Google Scholar 

  10. Gleiss AC, Norman B, Liebsch N, Francis C, Wilson RP (2009b) A new prospect for tagging large free-swimming sharks with motion-sensitive data-loggers. Fish Res 97:11–16. doi:10.1016/j.fishres.2008.12.012

    Article  Google Scholar 

  11. Gleiss AC, Dale JJ, Holland KN, Wilson RP (2010) Accelerating estimates of activity-specific metabolic rate in fish: testing the applicability of acceleration data-loggers. J Exp Mar Biol Ecol 385:85–91. doi:10.1016/j.jembe.2010.01.012

    Article  Google Scholar 

  12. Gleiss AC, Jorgensen SJ, Liebsch N, Sala JE, Norman B, Hays GC, Quintana F, Grundy E, Campagna C, Trites AW (2011a) Convergent evolution in locomotory patterns of flying and swimming animals. Nat Commun 2:352

    Article  Google Scholar 

  13. Gleiss AC, Norman B, Wilson RP (2011b) Moved by that sinking feeling: variable diving geometry underlies movement strategies in whale sharks. Funct Ecol 25:595–607. doi:10.1111/j.1365-2435.2010.01801.x

    Article  Google Scholar 

  14. Gleiss AC, Wilson RP, Shepard ELC (2011c) Making overall dynamic body acceleration work: on the theory of acceleration as a proxy for energy expenditure. Methods Ecol Evol 2:34–42. doi:10.1111/j.2041-210X.2010.00057.x

    Article  Google Scholar 

  15. Goldbogen JA, Calambokidis J, Shadwick RE, Oleson EM, McDonald MA, Hildebrand JA (2006) Kinematics of foraging dives and lunge-feeding in fin whales. J Exp Biol 209:1231–1244. doi:10.1242/jeb.02135

    Article  Google Scholar 

  16. Goldbogen J, Calambokidis J, Oleson E, Potvin J, Pyenson N, Schorr G, Shadwick R (2011) Mechanics, hydrodynamics and energetics of blue whale lunge feeding: efficiency dependence on krill density. J Exp Biol 214:131–146

    Article  CAS  Google Scholar 

  17. Graham RT, Roberts CM, Smart JCR (2006) Diving behaviour of whale sharks in relation to a predictable food pulse. J R Soc Interface 3:109–116

    Article  Google Scholar 

  18. Green JA, Halsey LG, Wilson RP, Frappell PB (2009) Estimating energy expenditure of animals using the accelerometry technique: activity, inactivity and comparison with the heart-rate technique. J Exp Biol 212:471–482. doi:10.1242/jeb.026377

    Article  CAS  Google Scholar 

  19. Gunn JS, Stevens JD, Davis TLO, Norman BM (1999) Observations on the short-term movements and behaviour of whale sharks (Rhincodon typus) at Ningaloo Reef, Western Australia. Mar Biol 135:553–559

    Article  Google Scholar 

  20. Halsey LG, Shepard ELC, Quintana F, Gomez Laich A, Green JA, Wilson RP (2008) The relationship between oxygen consumption and body acceleration in a range of species. Comp Biochem Physiol A 152:197–202

    Google Scholar 

  21. Hays GC (2003) A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. Hydrobiologia 503:163–170

    Article  Google Scholar 

  22. Heyman WD, Graham RT, Kjerfve B, Johannes RE (2001) Whale sharks Rhincodon typus aggregate to feed on fish spawn in Belize. Mar Ecol Prog Ser 215:275–282

    Article  Google Scholar 

  23. Holmberg J, Norman B, Arzoumanian Z (2008) Estimating population size, structure, and residency time for whale sharks Rhincodon typus through collaborative photo-identification. Endanger Species Res 7:39–53

    Article  Google Scholar 

  24. Kawatsu S, Sato K, Watanabe Y, Hyodo S, Breves JP, Fox BK, Grau EG, Miyazaki N (2010) A new method to calibrate attachment angles of data loggers in swimming sharks. EURASIP J Adv Signal Process 1–6. doi:10.1155/2010/732586

  25. Klimley AP, Beavers SC, Curtis TH, Jorgensen SJ (2002) Movements and swimming behavior of three species of sharks in La Jolla Canyon, California. Environ Biol Fishes 63:117–135

    Article  Google Scholar 

  26. Loose CJ, Dawidowicz P (1994) Trade-offs in diel vertical migration by zooplankton: the costs of predator avoidance. Ecology 75:2255–2263

    Article  Google Scholar 

  27. Mauchline J (1967) Volume and weight characteristics of species of Euphausiacea. Crustaceana 13:241–248

    Article  Google Scholar 

  28. Meekan MG, Bradshaw CJA, Press M, McLean C, Richards A, Quasnichka S, Taylor JG (2006) Population size and structure of whale sharks Rhincodon typus at Ningaloo Reef, Western Australia. Mar Ecol Prog Ser 319:275–285

    Article  Google Scholar 

  29. Motta PJ, Maslanka M, Hueter RE, Davis RL, de la Parra R, Mulvany SL, A SJ, Habegger ML, Mara KR, Gardiner JM, Tyminski JP, Zeigler LD (2010) Feeding anatomy, filter-feeding rate, and diet of whale sharks Rhincodon typus during surface ram filter feeding off the Yucatan Peninsula, Mexico. Zoology 113:199–212

    Article  Google Scholar 

  30. Nakamura I, Watanabe Y, Papastamatiou Y, Sato K, Meyer C (2011) Yo-yo vertical movements suggest a foraging strategy for tiger sharks Galeocerdo cuvier. Mar Ecol Prog Ser 424:237–246. doi:10.3354/meps08980

    Article  Google Scholar 

  31. Nathan R, Spiegel O, Fortmann-Roe S, Harel R, Wikelski M, Getz WM (2012) Using tri-axial acceleration data to identify behavioral modes of free-ranging animals: general concepts and tools illustrated for griffon vultures. J Exp Biol 215:986–996

    Article  Google Scholar 

  32. Nelson JD, Eckert SA (2007) Foraging ecology of whale sharks (Rhincodon typus) within Bahia de Los Angeles, Baja California Norte, Mexico. Fish Res 84:47–64

    Article  Google Scholar 

  33. Papastamatiou Y, Lowe C (2012) An analytical and hypothesis‐driven approach to elasmobranch movement studies. J Fish Biol 80:1342–1360

    Article  CAS  Google Scholar 

  34. Papastamatiou YP, DeSalles PA, McCauley DJ (2012) Area-restricted searching by manta rays and their response to spatial scale in lagoon habitats. Mar Ecol Prog Ser 456:233–244

    Article  Google Scholar 

  35. R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  36. Ramírez‐Macías D, Meekan M, La Parra‐Venegas D, Remolina‐Suárez F, Trigo‐Mendoza M, Vázquez‐Juárez R (2012) Patterns in composition, abundance and scarring of whale sharks Rhincodon typus near Holbox Island, Mexico. J Fish Biol 80:1401–1416

    Article  Google Scholar 

  37. Ropert-Coudert Y, Wilson RP (2005) Trends and perspectives in animal-attached remote sensing. Front Ecol Environ 3:437–444

    Article  Google Scholar 

  38. Rowat D, Gore M (2007) Regional scale horizontal and local scale vertical movements of whale sharks, in the Indian Ocean off Seychelles. Fish Res 84:32–40

    Article  Google Scholar 

  39. Rowat D, Meekan MG, Engelhardt U, Pardigon B, Vely M (2007) Aggregations of juvenile whale sharks (Rhincodon typus) in the Gulf of Tadjoura, Djibouti. Environ Biol Fishes 80:465–472. doi:10.1007/s10641-006-9148-7

    Article  Google Scholar 

  40. Saunders RA, Royer F, Clarke MW (2011) Winter migration and diving behaviour of porbeagle shark, Lamna nasus, in the Northeast Atlantic. ICES J Mar Sci 68:166–174

    Article  Google Scholar 

  41. Schmidt JV, Schmidt CL, Ozer F, Ernst RE, Feldheim KA, Ashley MV, Levine M (2009) Low genetic differentiation across three major ocean populations of the whale shark, Rhincodon typus. PLoS One 4:e4988

    Article  Google Scholar 

  42. Sequeira AMM, Mellin C, Meekan MG, Sims DW, Bradshaw CJA (2013) Inferred global connectivity of whale shark Rhincodon typus populations. J Fish Biol 82:367–389. doi:10.1111/jfb.12017

    Article  CAS  Google Scholar 

  43. Shepard ELC, Ahmed MZ, Southall EJ, Witt MJ, Metcalfe JD, Sims DW (2006) Diel and tidal rhythms in diving behaviour of pelagic sharks identified by signal processing of archival tagging data. Mar Ecol Prog Ser 328:205–213

    Article  Google Scholar 

  44. Shepard ELC, Wilson RP, Halsey LG, Quintana F, Laich AG, Gleiss AC, Liebsch N, Myers AE, Norman B (2009a) Derivation of body motion via appropriate smoothing of acceleration data. Aquat Biol 4:235–241. doi:10.3354/Ab00104

    Article  Google Scholar 

  45. Shepard ELC, Wilson RP, Quintana F, Gómez Laich A, Forman DW (2009b) Pushed for time or saving on fuel: fine-scale energy budgets shed light on currencies in a diving bird. Proc R Soc B 276:3149–3155. doi:10.1098/rspb.2009.0683

    Article  Google Scholar 

  46. Shepard ELC, Wilson RP, Quintana F, Gomez Laich A, Liebsch N, Albareda DA, Halsey LG, Gleiss A, Morgan DT, Myers AE, Newman C, Macdonald DW (2010) Identification of animal movement patterns using tri-axial accelerometry. Endanger Species Res 10:47–60

    Article  Google Scholar 

  47. Sims DW (1999) Threshold foraging behaviour of basking sharks on zooplankton: life on an energetic knife-edge? Proc R Soc Lond B Biol Sci 266:1437–1443

    Article  Google Scholar 

  48. Sims DW, Quayle VA (1998) Selective foraging behaviour of basking sharks on zooplankton in a small-scale front. Nature 393:460–464

    Article  CAS  Google Scholar 

  49. Sims DW, Southall EJ, Tarling GA, Metcalfe JD (2005) Habitat-specific normal and reverse diel vertical migration in the plankton-feeding basking shark. J Anim Ecol 74:755–761. doi:10.1111/j.1365-2656.2005.00971.x

    Article  Google Scholar 

  50. Skomal GB, Zeeman SI, Chisholm JH, Summers EL, Walsh HJ, McMahon KW, Thorrold SR (2009) Transequatorial migrations by basking sharks in the Western Atlantic Ocean. Curr Biol 19:1019–1022

    Article  CAS  Google Scholar 

  51. Taylor JG (2007) Ram filter-feeding and nocturnal feeding of whale sharks (Rhincodon typus) at Ningaloo Reef, Western Australia. Fish Res 84:65–70

    Article  Google Scholar 

  52. Thums M, Meekan M, Stevens J, Wilson S, Polovina J (2012) Evidence for behavioural thermoregulation by the world’s largest fish. J R Soc Interface 10:20120477

    Article  Google Scholar 

  53. Watanabe Y, Baranov EA, Sato K, Naito Y, Miyazaki N (2004) Foraging tactics of Baikal seals differ between day and night. Mar Ecol Prog Ser 279:283–289

    Article  Google Scholar 

  54. Wearmouth VJ, Sims DW (2009) Movement and behaviour patterns of the critically endangered common skate Dipturus batis revealed by electronic tagging. J Exp Mar Biol Ecol 380:77–87

    Article  Google Scholar 

  55. Weihs D (1973) Mechanically efficient swimming techniques for fish with negative buoyancy. J Mar Res 31:194–209

    Google Scholar 

  56. Weng KC, Block BA (2004) Diel vertical migration of the bigeye thresher shark (Alopias superciliosus), a species possessing orbital retia mirabilia. Fish Bull 102:221–229

    Google Scholar 

  57. West GJ, Stevens JD (2001) Archival tagging of school shark, Galeorhinus galeus, in Australia: initial results. Environ Biol Fishes 60:283–298

    Article  Google Scholar 

  58. Whitney NM, Papastamatiou YP, Holland KN, Lowe CG (2007) Use of an acceleration data logger to measure diel activity patterns in captive whitetip reef sharks, Triaenodon obesus. Aquat Living Resour 20:299–305. doi:10.1051/alr:2008006

    Article  Google Scholar 

  59. Whitney N, Pratt HJ, Pratt T, Carrier J (2010) Identifying shark mating behaviour using three-dimensional acceleration loggers. Endanger Species Res 10:71–82. doi:10.3354/esr00247

    Article  Google Scholar 

  60. Whitney NM, Papastamatiou YP, Gleiss AC (2012) Integrative multi-sensor tagging of elasmobranchs: emerging techniques to quantify behavior, physiology, and ecology. In: Carrier JC, Heithaus MR, Musick JA (eds) Biology of sharks and their relatives, vol 2. CRC Press, Boca Raton

    Google Scholar 

  61. Wilson S, Pauly T, Meekan MG (2001) Daytime surface swarming by Pseudeuphausia latifrons (Crustacea, Euphausiacea) off Ningaloo Reef, Western Australia. Bull Mar Sci 68:157–162

    Google Scholar 

  62. Wilson SG, Pauly T, Meekan MG (2002) Distribution of zooplankton inferred from hydroacoustic backscatter data in coastal waters off Ningaloo Reef, Western Australia. Mar Freshw Res 53:1005–1016

    Article  Google Scholar 

  63. Wilson SG, Carleton JH, Meekan MG (2003) Spatial and temporal patterns in the distribution and abundance of macrozooplankton on the southern North West Shelf, Western Australia. Estuar Coast Shelf Sci 56:897–908

    Article  CAS  Google Scholar 

  64. Wilson RP, White CR, Quintana F, Halsey LG, Liebsch N, Martin GR, Butler PJ (2006a) Moving towards acceleration for estimates of activity-specific metabolic rate in free-living animals: the case of the cormorant. J Anim Ecol 75:1081–1090

    Article  Google Scholar 

  65. Wilson SG, Polovina JJ, Stewart BS, Meekan MG (2006b) Movements of whale sharks (Rhincodon typus) tagged at Ningaloo Reef, Western Australia. Mar Biol 148:1157–1166

    Article  Google Scholar 

  66. Wilson RP, Shepard ELC, Liebsch N (2008) Prying into the intimate details of animal lives: use of a daily diary on animals. Endanger Species Res 4:123–137. doi:10.3354/esr00064

    Article  Google Scholar 

  67. Woo M, Pattiaratchi C, Schroeder W (2006) Summer surface circulation along the Gascoyne continental shelf, Western Australia. Cont Shelf Res 26:132–152. doi:10.1016/j.csr.2005.07.007

    Article  Google Scholar 

  68. Wood SN (2006) Generalized additive models: an introduction with R. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  69. Yoda K, Naito Y, Sato K, Takahashi A, Nishikawa J, Ropert-Coudert Y, Kurita M, Le Maho Y (2001) A new technique for monitoring the behaviour of free-ranging Adelie penguins. J Exp Biol 204:685–690

    CAS  Google Scholar 

  70. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Google Scholar 

  71. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14

    Article  Google Scholar 

Download references

Acknowledgments

S.W. is funded by a Postgraduate Scholarship from the Fisheries Society of the British Isles. A.C.G. is funded by a Wingate Foundation Scholarship and a Swansea University Research Fees Scholarship. B.N. is funded through ECOCEAN Inc. and Murdoch University Research Studentship. Three anonymous referees, Sabrina Fossette and Graeme Hays gave helpful suggestions that greatly improved the quality of this paper. Whale shark fieldwork was funded by Royal Caribbean Cruise Lines (Ocean Fund), the Murdoch University Foundation and a Rolex Award for Enterprise under permit by the Western Australian Department of Environment and Conservation (DEC). The crew of RV Bo Kooling, L. Longley, G. Shedrawi, H. Shortland-Jones, D. Morgan, S. Lindfield, D. Bradley, E. Wilson, DEC and Department of Fisheries, Western Australia provided essential field support. This paper is dedicated to the memory of Clive “Q” Francis—without Clive, none of our tags would have ever been deployed on whale sharks.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adrian C. Gleiss.

Additional information

Adrian C. Gleiss and Serena Wright are joint first authors with equal contribution.

Communicated by J. D. R. Houghton.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gleiss, A.C., Wright, S., Liebsch, N. et al. Contrasting diel patterns in vertical movement and locomotor activity of whale sharks at Ningaloo Reef. Mar Biol 160, 2981–2992 (2013). https://doi.org/10.1007/s00227-013-2288-3

Download citation

Keywords

  • Vertical Movement
  • Aggregation Site
  • Diving Behaviour
  • Diel Pattern
  • Whale Shark