Skip to main content

Advertisement

Log in

Rates of apical septal extension of Desmophyllum dianthus: effect of association with endolithic photo-autotrophs

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

It has been hypothesized that endolithic photo-autotrophs inside the skeleton of cold-water corals may have a mutualistic relationship with the coral host positively affecting coral calcification. This study investigated the effect of endolithic photo-autotrophs on the apical septal extension of the cold-water coral Desmophyllum dianthus at Fjord Comau, southern Chile (42.41°–42.15°S, 72.5°W). The fluorescent staining agent calcein was used to document the linear apical extension of septae for a period of one and a half years between 2006 and 2007. The results showed a severe reduction in extension rates associated with the presence of endolithic photo-autotrophs. Infested individuals grew about half as fast as non-infested polyps with a median value of 1.18 μm day−1 compared to 2.76 μm day−1. Contrary to the initial hypothesis, these results point toward a parasitic relationship between D. dianthus and its endolithic photo-autotrophs potentially impairing coral fitness. However, further data on physiological parameters and other aspects of the calcification process are necessary to confirm these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adkins JF, Henderson GM, Wang S-L, O’Shea S, Mokadem F (2004) Growth rates of the deep-sea scleractinia Desmophyllum cristagalli and Enallopsammiarostrata. Earth Planet Sci Lett 227:481–490

    Article  CAS  Google Scholar 

  • Aeby GS, Williams GJ, Franklin EC, Haapkyla J, Harvell CD, Neale S, Page CA, Raymundo L, Vargas-Ángel B, Willis BL, Work TM, Davy SK (2011) Growth anomalies on the coral genera Acropora and Porites are strongly associated with host density and human population size across the Indo-Pacific. PLoS ONE 6:e16887

    Article  CAS  Google Scholar 

  • Beuck L, Vertino A, Stepina E, Karolczak M, Pfannkuche O (2007) Skeletal response of Lopheliapertusa (Scleractinia) to bioeroding sponge infestation visualised with micro-computed tomography. Facies 53:157–176

    Article  Google Scholar 

  • Brahmi C, Meibom A, Smith DC, Stolarski J, Auzoux-Bordenave S, Nouet J, Doumenc D, Djediat C, Domart-Coulon I (2009) Skeletal growth, ultrastructure and composition of the azooxanthellate scleractinian coral Balanophylliaregia. Coral Reefs 29:175–189

    Article  Google Scholar 

  • Cairns SD, Häussermann V, Försterra G (2005) A review of the Scleractinia (Cnidaria: Anthozoa) of Chile, with the description of two new species. Zootaxa 1018:15–46

    Google Scholar 

  • Dissard D, Nehrke G, Reichart GJ, Nouet J, Bijma J (2009) Effect of the fluorescent indicator calcein on Mg and Sr incorporation into foraminiferal calcite. Geochem Geophys Geosyst 10:1–13

    Article  Google Scholar 

  • Domart-Coulon IJ, Traylor-Knowles N, Peters E, Elbert D, Downs CA, Price K, Stubbs J, McLaughlin S, Cox E, Aeby G, Brown PR, Ostrander GK (2006) Comprehensive characterization of skeletal tissue growth anomalies of the finger coral Porites compressa. Coral Reefs 25:531–543

    Article  Google Scholar 

  • Fine M, Loya Y (2002) Endolithic algae: an alternative source of photoassimilates during coral bleaching. Proc R Soc B 269:1205–1210

    Article  Google Scholar 

  • Försterra G, Häussermann V (2003) First report on large scleractinian (Cnidaria: Anthozoa) accumulations in cold-temperate shallow water of south Chilean fjords. Zool Verh Leiden 345:117–128

    Google Scholar 

  • Försterra G, Häussermann V (2008) Unusual symbiotic relationships between microendolithic phototrophic organisms and azooxanthellate cold-water corals from Chilean fjords. Mar Ecol Prog Ser 370:121–125

    Article  Google Scholar 

  • Försterra G, Beuck L, Häussermann V, Freiwald A (2005) Shallow-water Desmophyllum dianthus (Scleractinia) from Chile: characteristics of the biocoenoses, the bioeroding community, heterotrophic interactions and (paleo)-bathymetric implications. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, pp 937–977

    Chapter  Google Scholar 

  • Gattuso JP, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am Zool 39:160–183

    CAS  Google Scholar 

  • Golubic S, Radtke G, Le Campion-Alsumard T (2005) Endolithic fungi in marine ecosystems. Trends Microbiol 13:229–235

    Article  CAS  Google Scholar 

  • Gutner-Hoch E, Fine M (2011) Genotypic diversity and distribution of Ostreobiumqueckettii within scleractinian corals. Coral Reefs 30:643–650

    Article  Google Scholar 

  • Highsmith RC (1981) Lime-boring algae in hermatypic coral skeletons. J Exp Mar BiolEcol 55:267–281

    Article  Google Scholar 

  • Iriarte J, González H, Liu K, Rivas C, Valenzuela C (2007) Spatial and temporal variability of chlorophyll and primary productivity in surface waters of southern Chile (41.5-43 S). Estuar Coast Shelf Sci 74:471–480

    Article  Google Scholar 

  • Kanwisher JW, Wainwright SA (1967) Oxygen balance in some reef corals. Biol Bull 133:378–390

    Article  Google Scholar 

  • Lazier AMYV, Smith JE, Risk MJ, Schwarcz HP (1999) The skeletal structure of Desmophyllum cristagalli: the use of deep-water corals in sclerochronology. Lethaia 32:119–130

    Article  Google Scholar 

  • Le Campion-Alsumard T, Golubic S, Priess K (1995a) Fungi in corals: symbiosis or disease? Interaction between polyps and fungi causes pearl-like skeleton biomineralization. Mar Ecol Prog Ser 117:137–147

    Article  Google Scholar 

  • Le Campion-Alsumard T, Golubic S, Hutchings P (1995b) Microbial endoliths in skeletons of live and dead corals: Porites lobata (Moorea, French Polynesia). Mar Ecol Prog Ser 117:149–157

    Article  Google Scholar 

  • Maier C, Watremez P, Taviani M, Weinbauer MG, Gattuso J-P (2012) Calcification rates and the effect of ocean acidification on Mediterranean cold-water corals. Proc R Soc Lond B 279:1713–1723

    Article  Google Scholar 

  • Marschal C, Garrabou J, Harmelin JG, Pichon M (2004) A new method for measuring growth and age in the precious red coral Coralliumrubrum (L.). Coral Reefs 23:423–432

    Article  Google Scholar 

  • Marshall AT, Clode P (2004) Calcification rate and the effect of temperature in a zooxanthellate and an azooxanthellate scleractinian reef coral. Coral Reefs 23:218–224

    Google Scholar 

  • McClanahan TR, Weil E, Maina J (2009) Strong relationship between coral bleaching and growth anomalies in massive Porites. Glob Change Biol 15:1804–1816

    Article  Google Scholar 

  • McCulloch M, Trotter J, Montagna P, Falter J, Dunbar R, Freiwald A, Försterra G, Correa ML, Maier C, Rüggeberg A, Taviani M (2012) Resilience of cold-water scleractinian corals to ocean acidification: boron isotopic systematics of pH and saturation state up-regulation. Geochim Cosmochim Acta 87:21–34

    Article  CAS  Google Scholar 

  • Miller KJ, Rowden AA, Williams A, Häussermann V (2011) Out of their depth? Isolated deep populations of the cosmopolitan coral Desmophyllum dianthus may be highly vulnerable to environmental change. PLoS ONE 6:e19004

    Article  CAS  Google Scholar 

  • Moran AL (2000) Calcein as a marker in experimental studies newly-hatched gastropods. Mar Biol 137:893–898

    Article  Google Scholar 

  • Naumann MS, Orejas C, Wild C, Ferrier-Pagès C (2011) First evidence for zooplankton feeding sustaining key physiological processes in a scleractinian cold water coral. J Exp Mar Biol Ecol 214:3570–3576

    CAS  Google Scholar 

  • Naumann MS, Orejas C, Ferrier-Pagès C (2013) High thermal tolerance of two Mediterranean cold-water coral species maintained in aquaria. Coral Reefs. doi:10.1007/s00338-013-1011-7

    Google Scholar 

  • Odum HT, Odum EP (1955) Trophic structure and productivity of a windward coral reef community on Eniwetok Atoll. Ecol Monogr 25:291–320

    Article  Google Scholar 

  • Peck LS, Brockington S, Brey T (1997) Growth and metabolism in the Antarctic brachiopod Liothyrellauva. Phil Trans R Soc B 352:851–858

    Article  Google Scholar 

  • Peck LS, Colman JG, Murray AWA (2000) Growth and tissue mass cycles in the infaunal bivalve Yoldiaeightsi at Signy Island, Antarctica. Polar Biol 23:420–428

    Article  Google Scholar 

  • Pickard GL (1971) Some physical oceanographic features of inlets of Chile. J Fish Res Bd Canada 28:1077–1106

    Article  Google Scholar 

  • Risk MJ, Pagani SE, Elias RJ (1987) Another internal clock: preliminary estimates of growth rates based on cycles of algal boring activity. Palaios 2:323–331

    Article  Google Scholar 

  • Risk M, Heikoop J, Snow M, Beukens R (2002) Lifespans and growth patterns of two deep-sea corals: Primnoaresedaeformis and Desmophyllum cristagalli. Hydrobiologia 471:125–131

    Article  Google Scholar 

  • Roberts JM, Wheeler AJ, Freiwald A, Cairns SD (2009) Cold water corals. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rowley RJ, Mackinnon DI (1995) Use of the fluorescent marker calcein in biomineralisation studies of brachiopods and other marine organisms. Bull Inst Océanogr (Monaco) 14:111–120

    Google Scholar 

  • Schlichter D, Berglund O, Backe C, Eklöv A, Järnmark C, Persson A (1995) Transfer of photoassimilates from endolithic algae to coral tissue. Naturwissenschaften 82:559–561

    Article  Google Scholar 

  • Schlichter D, Kampmann H, Conrady S (1997) Trophic potential and photoecology of endolithic algae living within coral skeletons. Mar Ecol 18:299–317

    Article  Google Scholar 

  • Shashar N, Stambler N (1992) Endolithic algae within corals-life in an extreme environment. J Exp Mar Biol Ecol 163:277–286

    Article  CAS  Google Scholar 

  • Sorauf JE, Jell JS (1977) Structure and incremental growth in the ahermatypic coral Desmophyllum cristagalli from the North Atlantic. Paleontology 20:1–19

    Google Scholar 

  • Tambutte E, Tambutte S, Segonds N, Zoccola D, Venn A, Erez J, Allemand D (2011) Calceinlabelling and electrophysiology: insights on coral tissue permeability and calcification. Proc R Soc B 279:19–27

    Article  Google Scholar 

  • Titlyanov EA, Kiyashko SI, Titlyanova TV, Kalita TL, Raven JA (2008) δ13C and δ15 N values in reef corals Poriteslutea and P. cylindrica and in their epilithic and endolithic algae. Mar Biol 155:353–361

    Article  Google Scholar 

  • Tribollet A (2008) The boring microflora in modern coral reef ecosystems: a review of its roles. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 67–94

    Chapter  Google Scholar 

  • Waller R (2005) Deep-water Scleractinia (Cnidaria: Anthozoa): current knowledge of reproductive processes. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, pp 691–700

    Chapter  Google Scholar 

  • Waller RG, Tyler PA (2005) The reproductive biology of two deep-water, reef-building scleractinians from the NE Atlantic Ocean. Coral Reefs 24:514–522

    Article  Google Scholar 

  • Weber JN, White EW, Weber PH (1975) Correlation of density banding in reef coral skeletons with environmental parameters: the basis for interpretation of chronological records preserved in the coralla of corals. Paleobiology 1:137–149

    Google Scholar 

  • Work T, Aeby G, Coles S (2008) Distribution and morphology of growth anomalies in Acropora from the Indo-Pacific. Dis Aquat Organ 78:255–264

    Article  Google Scholar 

Download references

Acknowledgments

Many thanks to Claudio Richter, Kerstin Beyer, Marlene Wall, Lars Beierlein, Johannes Freitag, Sebastian Baumgarten and Tristan Chipchase for supporting CH in her research and the staff of the Huinay Scientific field station for helping to complete the field work for this study (Liz Atwood, David Thompson, Russell Smart, Michelle Marcotte, Josh Biro). PhW was supported by a travel grant from the Fonds Léopold III pour l’Exploration et la Conservation de la Nature. This is publication nr. 82 of Huinay Scientific Field Station.

Ethical statement

To conduct the experiments for this study, the permission to collect samples and the CITES (Convention on International Trade in Endangered Species of Wild Fauna and Flora) permission were obtained in compliance with the laws in Chile where the study was conducted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Hassenrück.

Additional information

Communicated by M. Kühl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassenrück, C., Jantzen, C., Försterra, G. et al. Rates of apical septal extension of Desmophyllum dianthus: effect of association with endolithic photo-autotrophs. Mar Biol 160, 2919–2927 (2013). https://doi.org/10.1007/s00227-013-2281-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-013-2281-x

Keywords

Navigation