Skip to main content

Advertisement

Log in

Detecting hyperthermal stress in larvae of the hermatypic coral Porites astreoides: the suitability of using biomarkers of oxidative stress versus heat-shock protein transcriptional expression

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Scleractinian coral populations are declining worldwide in response to a variety of factors including increases in sea surface temperatures. To evaluate the effects of predicted elevated seawater temperatures on coral recruitment, larvae from the coral Porites astreoides were exposed to seawater at ambient (27.3 °C) or elevated temperature (30.8 °C) conditions for 4, 24, or 48 h. Following exposure, larvae were tested for survival and settlement, oxidative stress, respiratory demand, and mRNA expression of heat-shock proteins (Hsps) 16 and 60. While elevated temperature had no effect on larval survival, settlement, or expression of Hsps, it did cause a significant increase in larval respiration, oxidative damage (lipid peroxidation), and antioxidant enzyme activity (catalase). The absence of a significant up-regulation of Hsp 16 or 60 expression in response to thermal stress suggests that the transcriptional expression of these genes is a less sensitive diagnostic tool compared to biomarkers of oxidative stress at the temperatures examined. The results of this study provide evidence that enhanced levels of oxidative stress are encountered in zooxanthellae-containing coral larvae in response to elevated temperatures and that this occurrence should be strongly considered for use as a biomarker when monitoring sub-lethal cellular responses to rising sea surface temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adachi M, Liu Y, Fujii K, Calderwood SK, Nakai A et al. (2009) Oxidative stress impairs the heat stress response and delays unfolded protein recovery. PLoS ONE 4(11):e7719. doi:10.1371/journal.pone.0007719

    Article  Google Scholar 

  • Albright R, Langdon C (2011) Ocean acidification impacts multiple early life history processes of the Caribbean coral Porites astreoides. Glob Change Biol 17:2478–2487. doi:10.1111/j.1365-2486.2011.02404.x

    Article  Google Scholar 

  • Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 81:169–193

    Article  Google Scholar 

  • Bassim K, Sammarco P (2003) Effects of temperature and ammonium on larval development and survivorship in a scleractinian coral (Diploria strigosa). Mar Biol 142:241–252

    CAS  Google Scholar 

  • Bellantuono AJ, Granados-Cifuentes C, Miller DJ, Hoegh-Guldberg O, Rodriguez-Lanetty M (2012) Coral thermal tolerance: tuning gene expression to resist thermal stress. PLoS ONE 7(11):e50685. doi:10.1371/journal.pone.0050685

    Article  CAS  Google Scholar 

  • Black NA, Voellmy R, Szamnt AM (1995) Heat shock protein induction in Montastrea faveolata and Aiptasia pallida exposed to elevated temperatures. Biol Bull 188:234–240

    Article  CAS  Google Scholar 

  • Branton MA, MacRae TH, Lipschultz F, Wells PG (1999) Identification of a small heat shock/α-crystallin protein in the scleractinian coral Madracis mirabilis (Duch. and Mitch.). Can J Zool 77:675–682

    CAS  Google Scholar 

  • Bruno JF, Selig ER (2007) Regional decline of coral cover in the Indo-Pacific: timing, extent, and subregional comparisons. PLoS ONE 2(8):e711. doi:10.1371/journal.pone.0000711

    Article  Google Scholar 

  • Carlon DB, Olson RR (1993) Larval dispersal distance as an explanation for adult spatial pattern in two Caribbean reef corals. J Exp Mar Biol Ecol 173:247–263

    Article  Google Scholar 

  • Crawford DL, Oleksiac MF (2007) The biological importance of measuring individual variation. J Exp Biol 210:1613–1621

    Article  Google Scholar 

  • Császár NBM, Seneca FO, Van Oppen MJH (2009) Variation in antioxidant gene expression in the scleractinian coral Acropora millepora under laboratory thermal stress. Mar Ecol Prog Ser 392:93–102

    Article  Google Scholar 

  • Desalvo MK, Voolstra CR, Sunagawa S, Schwarz JA, Stillman JH, Coffroth MA, Szmant AM, Medina M (2008) Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata. Mol Ecol 17:3952–3971

    Article  CAS  Google Scholar 

  • DeSalvo MK, Sunagawa S, Voolstra CR, Medina M (2010) Transcriptomic responses to heat stress and bleaching in the elkhorn coral Acropora palmata. Mar Ecol Prog Ser 402:97–113

    Article  CAS  Google Scholar 

  • Downs CA, Mueller E, Phillips S, Fauth JE, Woodley CM (2000) A molecular biomarker system for assessing the health of coral (Montastrea faveolata) during heat stress. Mar Biotechnol 2:533–544

    Article  CAS  Google Scholar 

  • Downs CA, Fauth JE, Halas JC, Dustan P, Bemiss J, Woodley CM (2002) Oxidative stress and seasonal coral bleaching. Free Radic Biol Med 33:533–543

    Article  CAS  Google Scholar 

  • Edge SE, Morgan MB, Gleason DF, Snell TW (2005) Development of a coral cDNA array to examine gene expression profiles in Montastraea faveolata exposed to environmental stress. Mar Pollut Bull 51:507–523

    Article  CAS  Google Scholar 

  • Edmunds PJ, Gates RD, Gleason DF (2001) The biology of larvae from the reef coral Porites astreoides, and their response to temperature disturbances. Mar Biol 139:981–989

    Article  Google Scholar 

  • Fang L, Huang S, Lin K (1997) High temperature induces the synthesis of heat-shock proteins and the elevation of intracellular calcium in the coral Acropora grandis. Coral Reefs 16:127–131

    Article  Google Scholar 

  • Feder ME, Hofmann G (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    Article  CAS  Google Scholar 

  • Fitt WK, Gates RD, Hoegh-Guldberg O, Bythell JC, Jatkard A, Grottoli AG, Gomez M, Fisher P, Lajuenesse TC, Pantos O, Iglesias-Prieto R, Franklin DJ, Rodrigues LJ, Torregiani JM, van Woesik R, Lesser MP (2009) Response of two species of Indo-Pacific corals, Porites cylindrica and Stylophora pistillata, to short-term thermal stress: the host does matter in determining the tolerance of corals to bleaching. J Exp Mar Biol Ecol 373:102–110

    Article  Google Scholar 

  • Gardner TA, Cote IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region wide declines in Caribbean corals. Science 301:958–960

    Article  CAS  Google Scholar 

  • Gates RD, Edmunds PJ (1999) The physiological mechanisms of acclimatization in tropical reef corals. Integr Comp Biol 39:30–43

    Article  Google Scholar 

  • Glanemann C, Loos A, Gorret N, Willis LB, O’Brien XM, Lessard PA, Sinskey AJ (2003) Disparity between changes in mRNA abundance and enzyme activity in Corynebacterium glutamicum: implications for DNA microarray analysis. Appl Microbiol Biotechnol 61:61–68. doi:10.1007/s00253-002-1191-5

    CAS  Google Scholar 

  • Graham EM, Baird AH, Connolly SR (2008) Survival dynamics of scleractinian coral larvae and implications for dispersal. Coral Reefs 27:529–539

    Article  Google Scholar 

  • Griffin SP, Bhagoolib R, Weil E (2006) Evaluation of thermal acclimation capacity in corals with different thermal histories based on catalase concentrations and antioxidant potentials. Comp Biochem Physiol A Mol Integr Physiol 144:155–162

    Article  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322

    Article  CAS  Google Scholar 

  • Hayes RL, King CM (1995) Induction of 70-kD heat shock protein in scleractinian corals by elevated temperature: significance for coral bleaching. Mol Mar Biol Biotechnol 1:36–42

    Google Scholar 

  • Higuchi T, Fujimura H, Arakaki T, Oomori T (2008) Activities of antioxidant enzymes (SOD and CAT) in the coral Galaxea fascicularis against increased hydrogen peroxide concentrations in seawater. In: Proceeding of the 11th International Coral Reef Symposium

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatsiolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  Google Scholar 

  • IPCC (2007) Climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Jokiel PL, Coles SL (1990) Response of Hawaiian and other Indo-Pacific reef corals to elevated temperature. Coral Reefs 8:155–162

    Article  Google Scholar 

  • Kenkel CD, Aglyamova G, Alamaru A, Bhagooli R, Capper R et al (2011) Development of gene expression markers of acute heat-light stress in reef-building corals of the Genus Porites. PLoS ONE 10:2–10

    Google Scholar 

  • Kingsley RJ, Afif E, Cox BC, Kothari S, Kriechbaum K, Kuchinsky K, Neill AT, Puri AF, Kish VM (2003) Expression of heat shock and cold shock proteins in the gorgonian Leptogorgia virgulata. J Exp Zool 296A:98–107. doi:10.1002/jez.a.10248

    Article  CAS  Google Scholar 

  • Koch M, Bowes G, Ross C, Zhang XH (2013) Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob Change Biol 19:103–132. doi:10.1111/j.1365-2486.2012.02791.x

    Article  Google Scholar 

  • Kuffner IB, Walters LJ, Becerro MA, Paul VJ, Ritson-Williams R, Beach KS (2006) Inhibition of coral recruitment by macroalgae and cyanobacteria. Mar Ecol Prog Ser 323:107–117

    Article  Google Scholar 

  • Lesser MP (1996) Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnol Oceanogr 41:271–283

    Article  CAS  Google Scholar 

  • Lesser MP (1997) Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs 16:187–192

    Article  Google Scholar 

  • Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278

    Article  CAS  Google Scholar 

  • Lesser MP, Farrell JH (2004) Exposure to solar radiation increases damage to both host tissues and algal symbionts of corals during thermal stress. Coral Reefs 23:367–377

    Article  Google Scholar 

  • Mayfield AB, Wang L, Tang P, Fan T, Hsiao Y, Tsai C, Chen C (2011) Assessing the impacts of experimentally elevated temperature on the biological composition and molecular chaperone gene expression of a reef coral. PLoS ONE 6(10):e26529. doi:10.1371/journal.pone.0026529

    Article  CAS  Google Scholar 

  • McGuire MP (1998) Timing of larval release by Porites astreoides in the northern Florida keys. Coral Reefs 17:369–375

    Article  Google Scholar 

  • Meyer E, Davies S, Wang S, Willis BL, Abrego D, Juenger TE, Matz MV (2009) Genetic variation in responses to a settlement cue and elevated temperature in the reef-building coral Acropora millepora. Mar Ecol Prog Ser 392:81–92

    Article  CAS  Google Scholar 

  • Monaghan P, Metcalfe NB, Torres R (2009) Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation. Ecol Lett 12:75–92. doi:10.1111/j.1461-0248.2008.01258.x

    Article  Google Scholar 

  • Nakamura M, Ohki S, Suzuki A, Sakai K (2011) Coral larvae under ocean acidification: survival, metabolism, and metamorphosis. PLoS ONE 6(1):e14521. doi:10.1371/journal.pone.0014521

    Article  CAS  Google Scholar 

  • Nozawa Y, Harrison PL (2007) Effects of elevated temperature on larval settlement and post-settlement survival in scleractinian corals, Acropora solitaryensis and Favites chinensis. Mar Biol 152:1181–1185

    Article  Google Scholar 

  • O’Connor MI, Bruno JF, Gaines SD, Halpern BS, Lester SE, Kinlan BP, Weiss JM (2007) Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proc Natl Acad Sci 104:1266–1271

    Article  Google Scholar 

  • Ochrietor JD, Moroz TP, van Ekeris L, Clamp MF, Jefferson SC, deCarvalho AD, Fadool JM, Wistow G, Muramatsu T, Linser PJ (2003) Retina-specific expression of 5A11/Basigin-2, a member of the immunoglobulin gene superfamily. IOVS 44:4086–4096

    Google Scholar 

  • Pechenik JA (1999) On the advantages and disadvantages of larval stages in benthic marine invertebrate life cycles. Mar Ecol Prog Ser 177:269–297

    Article  Google Scholar 

  • Polato NR, Voolstra CR, Schnetzer J, DeSalvo MK, Randall CJ, Szmant AM, Medina M, Baums IB (2010) Location-specific responses to thermal stress in larvae of the reef-building coral Montastraea faveolata. PLoS ONE 5(6):e11221. doi:10.1371/journal.pone.0011221

    Article  Google Scholar 

  • Pospisil P (2012) Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. BBA Bioenergetics 1817:218–231. doi:10.1016/j.bbabio.2011.05.017

    Article  CAS  Google Scholar 

  • Putnam HM, Mayfield AB, Fan TY, Chen CS, Gates RD (2012) The physiological and molecular responses of larvae from the reef-building coral Pocillopora damicornis exposed to near-future increases in temperature and pCO2. Mar Biol. doi:10.1007/s00227-012-2129-9

    Google Scholar 

  • Raimondi PT, Keough MJ (1990) Behavioural variability in marine larvae. Austral Ecol 15:427–437

    Article  Google Scholar 

  • Randall CJ, Szmant AM (2009) Elevated temperature reduces survivorship and settlement of the larvae of the Caribbean scleractinian coral, Favia fragum (Esper). Coral Reefs 28:537–545

    Article  Google Scholar 

  • Ritson-Williams R, Arnold SN, Fogarty ND, Steneck RS, Vermeij MJA, Paul VJ (2009) New perspectives on ecological mechanisms affecting coral recruitment on reefs. Smithson Contrib Mar Sci 38:437–457

    Article  Google Scholar 

  • Robbart ML, Peckol P, Scordilis SP, Curran HA, Brown-Saracino J (2004) Population recovery and differential heat shock protein expression for the corals Agaricia agaricites and A. tenuifolia in Belize. Mar Ecol Prog Ser 283:151–160

    Article  Google Scholar 

  • Rodriguez-Lanetty M, Harii S, Hoegh-Guldberg O (2009) Early molecular responses of coral larvae to hyperthermal stress. Mol Ecol 18:5101–5114

    Article  CAS  Google Scholar 

  • Ross C, Ritson-Williams R, Pierce R, Bullington JB, Henry M, Paul VJ (2010) Effects of the Florida red tide dinoflagellate, Karenia brevis, on oxidative stress and metamorphosis of larvae of the coral Porites astreoides. Harmful Algae 9:173–179

    Article  CAS  Google Scholar 

  • Ross C, Ritson-Williams R, Olsen K, Paul VJ (2013) Short-term and latent post-settlement effects associated with elevated temperature and oxidative stress on larvae from the coral Porites astreoides. Coral Reefs. doi:10.1007/s00338-012-0956-2

    Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  CAS  Google Scholar 

  • Schnitzler CE, Hollingsworth LL, Krupp DA, Weis VM (2012) Elevated temperature impairs onset of symbiosis and reduces survivorship in larvae of the Hawaiian coral, Fungia scutaria. Mar Biol 159:633–642

    Article  Google Scholar 

  • Sharp VA, Brown BE, Miller D (1997) Heat shock protein (hsp 70) expression in the tropical reef coral Goniopora djiboutiensis. J Therm Biol 22:11–19

    Article  CAS  Google Scholar 

  • Voolstra CR, Schnetzer J, Peshkin L, Randall CJ, Szmant AM, Medina M (2009) Effects of temperature on gene expression in embryos of the coral Montastraea faveolata. BMC Genomics 10:627. doi:10.1186/1471-2164-10-627

    Article  Google Scholar 

  • Weis VM (2008) Cellular mechanisms of cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol 211:3059–3066

    Article  CAS  Google Scholar 

  • Wiens M, Ammar MS, Nawar NH, Koziol C, Hassanein HM, Eisinger M, Müllera IM, Müllera WE (2000) Induction of heat-shock (stress) protein gene expression by selected natural and anthropogenic disturbances in the octocoral Dendronephthya klunzingeri. J Exp Mar Biol Ecol 245:265–276

    Article  CAS  Google Scholar 

  • Yakovleva I, Bhagooli R, Takemurac A, Hidakaa M (2004) Differential susceptibility to oxidative stress of two scleractinian corals: antioxidant functioning of mycosporine-glycine. Comp Biochem Physiol B Biochem Mol Biol 139:721–730

    Article  CAS  Google Scholar 

  • Yakovleva IM, Baird AH, Yamamoto HH, Bhagooli R, Nonaka M, Hidaka M (2009) Algal symbionts increase oxidative damage and death in coral larvae at high temperatures. Mar Ecol Prog Ser 378:105–112

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Tom Bartlett, Erin Hoover, Erica Robinson, and Rebecca Jamison for assistance with coral collection and larval husbandry. We thank Dr. Eric Johnson for assistance with statistical analysis. We also thank Erich Bartels for field assistance. This work was conducted under permit no. FKNMS-2011-038 issued by the Florida Keys National Marine Sanctuary. This work was supported by the University of North Florida’s “Transformational Learning Opportunity” program and Coastal Biology Program. VP and RRW were supported by Mote Protect our Reefs Grant 2011-21. This is contribution #911 of the Smithsonian Marine Station at Ft. Pierce.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ross.

Additional information

Communicated by H.-O. Pörtner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olsen, K., Ritson-Williams, R., Ochrietor, J.D. et al. Detecting hyperthermal stress in larvae of the hermatypic coral Porites astreoides: the suitability of using biomarkers of oxidative stress versus heat-shock protein transcriptional expression. Mar Biol 160, 2609–2618 (2013). https://doi.org/10.1007/s00227-013-2255-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-013-2255-z

Keywords

Navigation