Adaptations to semi-terrestrial life in embryos of East African mangrove crabs: a comparative approach

Abstract

In this experimental study, we compared the embryonic respiration rate in air and water of six East African sesarmid species with intertidal, supratidal and arboreal habits, to highlight possible adaptations in embryonic metabolism to their different lifestyles. The embryos of all analysed crabs showed bimodal respiration, but we did not find a trend towards an enhanced embryonic oxygen uptake in air from the intertidal to the arboreal and supratidal species. However, the late-stage embryos of the most land-adapted species, Chiromantes spp., showed an enhanced metabolism when immersed in sea water that we interpreted as an adaptive recovery mechanism to cope with the storage of by-products due to marine-based metabolic pathways during long emersion periods. Thus, we showed that the embryos of land-adapted species, although still strongly water dependent, are well adapted to semi-terrestrial habitats and represent a minor limiting factor for females, which are not restricted in their emersion period by the oxygen requirements of their embryos.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Aguilar NM, Ishimatsu A, Ogawa K, Huat KK (2000) Aerial ventilatory responses of the mudskipper, Periophthalmodon schlosseri, to altered aerial and aquatic respiratory gas concentrations. Comp Biochem Physiol A: Mol Integr Physiol 127:285–292

    Article  CAS  Google Scholar 

  2. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  3. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA + for PRIMER: guide to software and statistical methods. PRIMER–E Ltd, Plymouth

    Google Scholar 

  4. Anger K (1995) The conquest of freshwater and land by marine crabs: adaptations in life–history patterns and larval bioenergetics. J Exp Mar Biol Ecol 193:119–145

    Article  Google Scholar 

  5. Bartolini F, Barausse A, Pörtner HO, Giomi F (2013) Climate change reduces offspring fitness in littoral spawners: a study integrating organismic response and long-term time-series. Glob Change Biol 19:373–386

    Article  Google Scholar 

  6. Burggren WW, McMahon BR (1988) Biology of the land crabs. Cambridge University Press, Cambrige

    Book  Google Scholar 

  7. Cannicci S, Ritossa S, Ruwa RK, Vannini M (1996a) Tree fidelity and hole fidelity in the tree crab Sesarma leptosoma (Decapoda, Grapsidae). J Exp Mar Biol Ecol 196:299–311

    Article  Google Scholar 

  8. Cannicci S, Ruwa RK, Ritossa S, Vannini M (1996b) Branch-fidelity in the tree crab Sesarma leptosoma (Decapoda, Grapsidae). J Zool Lond 238:795–801

    Article  Google Scholar 

  9. Cannicci S, Fratini S, Vannini M (1999) Use of time, space and food resources in the mangrove climbing crab Selatium elongatum (Grapsidae: Sesarminae). Mar Biol 135:335–339

    Article  Google Scholar 

  10. Cannicci S, Morino L, Vannini M (2002) Behavioural evidence for visual recognition of predators by the mangrove climbing crab Sesarma leptosome. Anim Behav 63:77–83

    Article  Google Scholar 

  11. Cannicci S, Burrows D, Fratini S, Smith TJ III, Offenberg J, Dahdouh-Guebas F (2008) Faunal impact on vegetation structure and ecosystem function in mangrove forests: a review. Aquat Bot 89:186–200

    Article  Google Scholar 

  12. Cannicci S, Simoni R, Giomi F (2011) Role of the embryo in crab terrestrialisation: an ontogenetic approach. Mar Ecol Prog Ser 430:121–131

    Article  Google Scholar 

  13. Clarke KR, Gorley RN (2006) PRIMER V6: user manual/tutorial. PRIMER-E Ltd, Plymouth

    Google Scholar 

  14. Dahdouh-Guebas F, Verneirt M, Cannicci S, Kairo J, Tack J, Koedam N (2002) An exploratory study on grapsid crab zonation in Kenyan mangroves. Wetl Ecol Manag 10:179–187

    Article  Google Scholar 

  15. Duke NC (1995) Genetic diversity, distributional barriers and rafting continents more thoughts on the evolution of mangroves. Hydrobiologia 295:167–181

    Article  Google Scholar 

  16. Duke NC, Meynecke JO, Dittmann S, Ellison AM, Anger K, Berger U, Cannicci S, Diele K, Ewel KC, Field CD (2007) A world without mangroves? Science 317:41–42

    Article  CAS  Google Scholar 

  17. Ellison AM, Farnsworth EJ, Merkt RE (1999) Origins of mangrove ecosystems and the mangrove biodiversity anomaly. Glob Ecol Biogeogr 8:95–115

    Google Scholar 

  18. Erickson AA, Saltis M, Bell SS, Dawes CJ (2003) Herbivore feeding preferences as measured by leaf damage and stomatal ingestion: a mangrove crab example. J Exp Mar Biol Ecol 289:123–138

    Article  Google Scholar 

  19. Erickson AA, Bell SS, Dawes CJ (2004) Does mangrove leaf chemistry help explain crab herbivory patterns? Biotropica 36:333–343

    Google Scholar 

  20. Fernández M, Ruiz-Tagle N, Cifuentes S, Pörtner HO, Arntz W (2003) Oxygen-dependent asynchrony of embryonic development in embryo masses of brachyuran crabs. Mar Biol 142:559–565

    Google Scholar 

  21. Fratini S, Cannicci S, Vannini M (2001) Feeding clusters and olfaction in the mangrove snail Terebralia palustris (Linnaeus) (Potamididae : Gastropoda). J Exp Mar Biol Ecol 261:173–183

    Article  Google Scholar 

  22. Fratini S, Vannini M, Cannicci S, Schubart C (2005) Tree-climbing mangrove crabs: a case of convergent evolution. Evol Ecol Res 7:219–233

    Google Scholar 

  23. Fratini S, Vannini M, Cannicci S (2008) Feeding preferences and food searching strategies mediated by air- and water-borne cues in the mud whelk Terebralia palustris (Potamididae: Gastropoda). J Exp Mar Biol Ecol 362:26–31

    Article  Google Scholar 

  24. Gillikin DP, Schubart CD (2004) Ecology and systematics of mangrove crabs of the genus Perisesarma (Crustacea: Brachyura: Sesarmidae) from East Africa. Zool J Linn Soc 141:435–445

    Article  Google Scholar 

  25. Greenaway P (1999) Physiological diversity and the colonization of land. In: Schram FR, Von Vaupel Klei JC (eds) Crustaceans and the biodiversity crisis, vol 1. Koninklijke Brill NV, Leiden, pp 823–842

    Google Scholar 

  26. Guerao G, Simoni R, Cannicci S, Anger K (2011) Morphological description of the megalopa and the first juvenile crab stage of Chiromantes eulimene (Decapoda, Brachyura, Sesarmidae), with a revision on zoeal morphology. Invertebr Reprod Dev 55:100–109

    Article  Google Scholar 

  27. Guerao G, Anger K, Simoni R, Cannicci S (2012) The early life history of Chiromantes ortmanni (Crosnier, 1965) (Decapoda: Brachyura: Sesarmidae): morphology of larval and juvenile stages. Zootaxa 3347:36–62

    Google Scholar 

  28. Hartnoll RG (1975) The Grapsidae and Ocypodidae (Decapoda: Brachyura) of Tanzania. J Zool Lond 177:305–328

    Article  Google Scholar 

  29. Hartnoll RG (1988) Evolution, systematics, and geographical distribution. In: Burggren WW, McMahon BR (eds) Biology of the land crabs. Cambridge University Press, Cambridge, pp 6–54

    Google Scholar 

  30. Ishimatsu A, Hishida Y, Takita T, Kanda T, Oikawa S, Takeda T, Huat KK (1998) Mudskippers store air in their burrows. Nature 391:237–238

    Article  CAS  Google Scholar 

  31. Ishimatsu A, Yoshida Y, Itoki N, Takeda T, Lee HJ, Graham JB (2007) Mudskippers brood their eggs in air but submerge them for hatching. J Exp Biol 210:3946–3954

    Article  Google Scholar 

  32. Jones DA (1984) Crabs of the mangal ecosystem. In: Por FD, Dor I (eds) Hydrobiology of the mangal. Dr W Junk Publishers, The Hague, pp 89–109

  33. Martin KLM, Van Winkle RC, Drais JE, Lakisic H (2004) Beach-spawning fishes, terrestrial eggs, and air breathing. Physiol Biochem Zool 77:750–759

    Article  CAS  Google Scholar 

  34. McMahon BR, Burggren WW (1988) Respiration. In: Burggren WW, McMahon BR (eds) Biology of the land crabs. Cambridge University Press, Cambridge, pp 249–297

    Google Scholar 

  35. Morris S (2002) The ecophysiology of air-breathing in crabs with special reference to Gecarcoidea natalis. Comp Biochem Physiol B: Biochem Mol Biol 131:559–570

    Article  Google Scholar 

  36. Penha-Lopes G, Bartolini F, Limbu S, Cannicci S, Mgaya Y, Kristensen E, Paula J (2010) Ecosystem engineering potential of the gastropod Terebralia palustris (Linnaeus, 1767) in mangrove wastewater wetlands—A controlled mesocosm experiment. Environ Pollut 158:258–266

    Article  CAS  Google Scholar 

  37. Schubart CD, Cannicci S, Vannini M, Fratini S (2006) Molecular phylogeny of grapsoid crabs (Decapoda, Brachyura) and allies based on two mitochondrial genes and a proposal for refraining from current superfamily classification. J Zool Syst Evol Res 44:193–199

    Article  Google Scholar 

  38. Seymour RS (1999) Respiration of aquatic and terrestrial amphibian embryos. Integr Comp Biol 39:261–270

    Article  Google Scholar 

  39. Seymour RS, Bradford DF (1995) Respiration of amphibian eggs. Physiol Zool 68:1–25

    Google Scholar 

  40. Simoni R, Cannicci S, Anger K, Pörtner HO, Giomi F (2011) Do amphibious crabs have amphibious eggs? A case study of Armases miersii. J Exp Mar Biol Ecol 409:107–113

    Article  Google Scholar 

  41. Skov MW, Hartnoll RG, Ruwa RK, Shunula JP, Vannini M, Cannicci S (2005) Marching to a different drummer: crabs synchronise reproduction to a 14-month lunar-tidal cycle. Ecology 86:1164–1171

    Article  Google Scholar 

  42. Strathmann RR, Chaffee C (1984) Constraints on egg masses. II. Effect of spacing, size, and number of eggs on ventilation of masses of embryos in jelly, adherent groups or thin-walled capsules. J Exp Mar Biol Ecol 84:85–93

    Article  Google Scholar 

  43. Strathmann RR, Hess HC (1999) Two designs of marine egg masses and their divergent consequences for oxygen supply and desiccation in air. Integr Comp Biol 39:253–260

    Article  Google Scholar 

  44. Tomlinson PB (1986) The botany of mangroves. Cambridge University Press, Cambridge

    Google Scholar 

  45. Vannini M, Ruwa RK (1994) Vertical migrations in the tree crab Sesarma leptosoma (Decapoda, Grapsidae). Mar Biol 118:271–278

    Article  Google Scholar 

  46. Warkentin KM, Gomez-Mestre I, McDaniel JG (2005) Development, surface exposure, and embryo behavior affect oxygen levels in eggs of the red-eyed treefrog, Agalychnis callidryas. Physiol Biochem Zool 78:956–966

    Article  Google Scholar 

  47. Zeil J, Hemmi J (2006) The visual ecology of fiddler crabs. J Comp Physiol A 192:1–25

    Article  Google Scholar 

Download references

Acknowledgments

We deeply thank Dr. James G. Kairo for his fundamental support during the fieldwork at the Gazi Research Station of the Kenya Marine and Fisheries Research Institute. Funds were obtained from Italian MIUR funds (ex 60 %) and the SP3-People (Marie Curie) IRSES Project CREC (No. 247514). This study has been conducted in accordance with institutional, national and international guidelines concerning the use of animals in research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Riccardo Simoni.

Additional information

Communicated by M. G. Chapman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 397 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Simoni, R., Giomi, F., Spigoli, D. et al. Adaptations to semi-terrestrial life in embryos of East African mangrove crabs: a comparative approach. Mar Biol 160, 2483–2492 (2013). https://doi.org/10.1007/s00227-013-2243-3

Download citation

Keywords

  • Oxygen Uptake
  • Mangrove Forest
  • Stage Versus
  • Ovigerous Female
  • Mangrove Crab