Skip to main content

Patterns, processes and vulnerability of Southern Ocean benthos: a decadal leap in knowledge and understanding

Abstract

In the Southern Ocean, that is areas south of the Polar Front, long-term oceanographic cooling, geographic separation, development of isolating current and wind systems, tectonic drift and fluctuation of ice sheets amongst others have resulted in a highly endemic benthic fauna, which is generally adapted to the long-lasting, relatively stable environmental conditions. The Southern Ocean benthic ecosystem has been subject to minimal direct anthropogenic impact (compared to elsewhere) and thus presents unique opportunities to study biodiversity and its responses to environmental change. Since the beginning of the century, research under the Census of Marine Life and International Polar Year initiatives, as well as Scientific Committee of Antarctic Research biology programmes, have considerably advanced our understanding of the Southern Ocean benthos. In this paper, we evaluate recent progress in Southern Ocean benthic research and identify priorities for future research. Intense efforts to sample and describe the benthic fauna, coupled with coordination of information in global databases, have greatly enhanced understanding of the biodiversity and biogeography of the region. Some habitats, such as chemosynthetic systems, have been sampled for the first time, while application of new technologies and methods are yielding new insights into ecosystem structure and function. These advances have also highlighted important research gaps, notably the likely consequences of climate change. In a time of potentially pivotal environmental change, one of the greatest challenges is to balance conservation with increasing demands on the Southern Ocean’s natural resources and services. In this context, the characterization of Southern Ocean biodiversity is an urgent priority requiring timely and accurate species identifications, application of standardized sampling and reporting procedures, as well as cooperation between disciplines and nations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Ainley D, Tin T (2012) Antarctica. In: Hilty JA, Chester CC, Cross MS (eds) Climate and conservation. Island Press, Washington, pp 267–277

    Chapter  Google Scholar 

  • Allcock AL, Strugnell JM (2012) Southern Ocean diversity: new paradigms from molecular ecology. Trends Ecol Evol 27(9):520–528

    Article  Google Scholar 

  • Allcock AL, Brierley AS, Thorpe JP et al (1997) Restricted gene flow and evolutionary divergence between geographically separated populations of the Antarctic octopus Pareledone turqueti. Mar Biol 129:97–102

    Article  Google Scholar 

  • Anderson JB, Shipp SS, Lowe AL et al (2002) The Antarctic ice sheet during the last glacial maximum and its subsequent retreat history: a review. Quat Sci Rev 21:49–70

    Article  Google Scholar 

  • Arango CP, Wheeler WC (2007) Phylogeny of the sea spiders (Arthropoda, Pycnogonida) based on direct optimization of six loci and morphology. Cladistics 23:1–39

    Article  Google Scholar 

  • Arango CP, Soler-Membrives A, Miller KJ (2011) Genetic differentiation in the circum-Antarctic sea spider Nymphon australe (Pycnogonida; Nymphonidae). Deep-Sea Res Part II 58(1):212–219

    CAS  Article  Google Scholar 

  • Arntz WE, Brey T, Gallardo VA (1994) Antarctic zoobenthos. Adv Mar Biol 32:241–304

    Google Scholar 

  • Arntz WE, Gutt J, Klages M (1997) Antarctic marine biodiversity: an overview. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities. Species, structure and survival. Cambridge University Press, Cambridge, pp 3–14

    Google Scholar 

  • Arntz WE, Thatje S, Linse K et al (2006) Missing link in the Southern Ocean: sampling the marine benthic fauna of remote Bouvet Island. Polar Biol 29:83–96

    Article  Google Scholar 

  • Aronson RB, Blake DB, Oji T (1997) Retrograde community structure in the late Eocene of Antarctica. Geology 25:903–906

    Article  Google Scholar 

  • Aronson RB, Thatje S, Clarke A et al (2007) Climate change and invasibility of the Antarctic benthos. Annu Rev Ecol Evol Syst 38:129–154

    Article  Google Scholar 

  • Baird HP, Miller KJ, Stark JS (2012) Genetic population structure in the Antarctic benthos: insights from the widespread amphipod. Orchomenella franklini. PLoS ONE 7(3):e34363

    CAS  Article  Google Scholar 

  • Ballard JWO, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13:729–744

    Article  Google Scholar 

  • Barnes DKA, Clarke A (1994) Seasonal variation in the feeding activity of four species of Antarctic Bryozoa in relation to environmental factors. J Exp Mar Biol Ecol 181:117–133

    Article  Google Scholar 

  • Barnes DKA, Clarke A (2011) Antarctic marine biology. Curr Biol 21:R451–R457

    CAS  Article  Google Scholar 

  • Barnes DKA, Hillenbrand CD (2010) Faunal evidence for a late quaternary trans-Antarctic seaway. Glob Change Biol 16:3297–3303

    Article  Google Scholar 

  • Barnes DKA, Peck LS (2005) Extremes of metabolic strategy in Antarctic Bryozoa. Mar Biol 147(4):979–988

    Article  Google Scholar 

  • Barnes DKA, Peck LS (2008) Vulnerability of Antarctic shelf biodiversity to predicted regional warming. Clim Res 37:149–163. doi:10.3354/cr00760

    Article  Google Scholar 

  • Barnes DKA, Souster T (2011) Reduced survival of Antarctic benthos linked to climate-induced iceberg scouring. Nature Clim Change 1:365–368

    Article  Google Scholar 

  • Barnes DKA, Kaiser S, Griffiths HJ et al (2009) Marine, intertidal, fresh-water and terrestrial biodiversity of an isolated polar archipelago. J Biogeogr 36(4):756–769. doi:10.1111/j.1365-2699.2008.02030.x

    Article  Google Scholar 

  • Barnes DKA, Peck LS, Morley SA (2010) Ecological relevance of laboratory determined temperature limits: colonization potential, biogeography and resilience of Antarctic invertebrates to environmental change. Glob Change Biol 16(11):3164–3169

    Google Scholar 

  • Barry JP, Grebmeier JM, Smith J et al (2003) Oceanographic versus seafloor-habitat control of benthic megafaunal communities in the S.W. Ross Sea, Antarctica. Antarct Res Ser 78:327–354

    Article  Google Scholar 

  • Beaman RJ, Harris PT (2005) Bioregionalisation of the George V Shelf, East Antarctica. Cont Shelf Res 25:1657–1691

    Article  Google Scholar 

  • Beaumont MA, Nielsen R, Robert C et al (2010) In defence of model-based inference in phylogeography. Mol Ecol 9:436–446

    Article  Google Scholar 

  • Bednaršek N, Tarling GA, Bakker DCE et al (2012) Extensive dissolution of live pteropods in the Southern Ocean. Nature Geosci. doi:10.1038/NGEO1635

    Google Scholar 

  • Bickford D, Lohman DJ, Sodhi NS et al (2007) Cryptic species as a window on diversity and conservation. Trend Ecol Evol 22:148–155

    Article  Google Scholar 

  • Blight LK, Ainley DG, Ackley SF et al (2010) Fishing for data in the Ross Sea. Science 330(6009):1316

    CAS  Article  Google Scholar 

  • Bowden DA, Schiaparelli S, Clark MR et al (2011) A lost world? Archaic crinoid-dominated assemblages on an Antarctic seamount. Deep-Sea Res Pt II 58:119–127

    Article  Google Scholar 

  • Brandão SN, Sauer J, Schön I (2010) Circumantarctic distribution in Southern Ocean benthos? A genetic test using the genus Macroscapha (Crustacea, Ostracoda) as a model. Mol Phylogenet Evol 55:1055–1069

    Article  Google Scholar 

  • Brandt A (1991) Zur Besiedlungsgeschichte des antarktischen Schelfes am Beispiel der Isopoda (Crustacea, Malacostraca). Ber Polarforsch 98:1–240

    Google Scholar 

  • Brandt A, Gooday AJ, Brandão SN et al (2007) First insights into the biodiversity and biogeography of the Southern Ocean deep sea. Nature 447(7142):307–311

    CAS  Article  Google Scholar 

  • Brandt A, Bathmann U, Brix S et al (2011) Maud rise—a snapshot through the water column. Deep-Sea Res Pt II 58:1962–1982. doi:10.1016/j.dsr2.2011.01.008

    Article  Google Scholar 

  • Brenke N (2005) An epibenthic sledge for operations on marine soft bottom and bedrock. Mar Technol Soc J 39:10–21

    Article  Google Scholar 

  • Bruchhausen PM, Raymond JA, Jacobs SS et al (1979) Fish, Crustaceans, and the sea floor under the Ross Ice Shelf. Science 203:449–451

    CAS  Article  Google Scholar 

  • Bucklin A, Ortman BD, Jennings RM et al (2010) A ‘‘Rosetta Stone’’ for zooplankton: DNA barcode analysis of holozooplankton diversity of the Sargasso Sea (NW Atlantic Ocean). Deep-Sea Res Pt II 57(24–26):2234–2247

    CAS  Google Scholar 

  • Budd AF, Foster CT, Dawson JP et al (2001) The Neogene marine biota of tropical America (“NMITA”) database: accounting for biodiversity in paleontology. J Paleont 73:743–751

    Article  Google Scholar 

  • CCAMLR XXVII (2008) Report of the twenty-seventh meeting of the scientific committee (CCAMLR-XXVII). CCAMLR, Hobart, Australia, http://www.ccamlr.org/en/CCAMLR-XXVII. Accessed 22 Dec 2012

  • CCAMLR XXVIII (2009) Report of the twenty-eighth meeting of the scientific committee (CCAMLR-XXVIII). CCAMLR, Hobart, Australia, http://www.ccamlr.org/en/CCAMLR-XXVIII. Accessed 22 Dec 2012

  • Choudhury M, Brandt A (2009) Benthic isopods (Crustacea, Malacostraca) from the Ross Sea, Antarctica: species checklist and their zoogeography in the Southern Ocean. Polar Biol 32:599–610

    Article  Google Scholar 

  • Chown SL, Lee JE, Hughes KA et al (2012) Challenges to the future conservation of the Antarctic. Science 337(6091):158–159

    CAS  Article  Google Scholar 

  • Clark MS, Fraser KPP, Peck LS (2008) Antarctic marine molluscs do have an HSP70 heat shock response. Cell Stress Chaperon 13(1):39–49

    CAS  Article  Google Scholar 

  • Clarke A (1996) Benthic marine habitats in Antarctica. In: Ross RM, Hofmann EE, Quetin LB (eds) Foundations for ecological research west of the Antarctic Peninsula. Antarct Res Ser 70:123–133

  • Clarke A (2003) The polar deep seas. In: Tyler PA (ed) Ecosystems of the deep oceans. Elsevier, Amsterdam, pp 239–260

    Google Scholar 

  • Clarke A (2008) Antarctic marine benthic diversity: patterns and processes. J Exp Mar Biol Ecol 366:48–55

    Article  Google Scholar 

  • Clarke A, Crame JA (1992) The Southern Ocean benthic fauna and climate change—a historical perspective. Philos Trans R Soc B Biol Sci 338:299–309

    Article  Google Scholar 

  • Clarke A, Johnston NM (2003) Antarctic marine benthic diversity. Oceanogr Mar Biol 41:47–114

    Google Scholar 

  • Clarke A, Tyler PA (2008) Adult Antarctic krill feeding at abyssal depths. Curr Biol 18:282–285

    CAS  Article  Google Scholar 

  • Clarke A, Griffiths HJ, Linse K et al (2007) How well do we know the Antarctic marine fauna? A preliminary study of macroecological and biogeographical patterns in Southern Ocean gastropod and bivalve molluscs. Divers Distrib 13:620–632

    Article  Google Scholar 

  • Clarke A, Griffiths HJ, Barnes DKA et al (2009) Spatial variation in seabed temperatures in the Southern Ocean: implications for benthic ecology and biogeography. J Geophys Res 114. doi:10.1029/2008JG000886

  • Coleman CO, Lowry JK, Macfarlane T (2010) DELTA for beginners: an introduction into the taxonomy software package DELTA. ZooKeys 45:1–75

    Article  Google Scholar 

  • Cressey D (2012) Disappointment as Antarctic protection bid fails. Nature. doi:10.1038/nature.2012.11723

    Google Scholar 

  • Culver SJ, Buzas MA (2000) Global latitudinal species diversity gradient in deep-sea benthic foraminifera. Deep-Sea Res Pt I 47:259–275

    Article  Google Scholar 

  • Cummings V, Thrush S, Norkko A, Andrew N, Hewitt J et al (2006) Accounting for local scale variability in benthos: implications for future assessments of latitudinal trends in the coastal Ross Sea. Antarc Sci 18(4):633–644

    Article  Google Scholar 

  • Danis B, Griffiths HJ (2009) Polar science: bid for freely accessible biodiversity archive. Nature 458. doi:10.1038/458830b

  • David B, Choné T, Festeau A et al (2005) Biodiversity of Antarctic echinoids: a comprehensive and interactive database. Sci Mar 69:201–203

    Google Scholar 

  • Dayton PK (1989) Interdecadal recruitment and destruction of an Antarctic sponge population and its effect on local populations of asteroids. Science 245:1484–1486

    CAS  Article  Google Scholar 

  • Dayton PK, Oliver JS (1977) Antarctic soft-bottom benthos in oligotrophic and eutrophic environments. Science 197:55–58

    CAS  Article  Google Scholar 

  • De Broyer C, Danis B (eds) (2009) SCAR-MarBIN: the Antarctic marine biodiversity information network. World Wide Web electronic publication. Accessed May 2012

  • De Broyer C, Danis B with 64 SCAR-MarBIN Taxonomic Editors (2011) How many species in the Southern Ocean? Towards a dynamic inventory of the Antarctic marine species. Deep-Sea Res Pt II 58(1–2):5–17

    Google Scholar 

  • Dell RK (1972) Antarctic benthos. Adv Mar Biol 10:1–216

    Article  Google Scholar 

  • Denton GH, Hughes TJ (2002) Reconstructing the Antarctic ice sheet at the last glacial maximum. Quat Sci Rev 21:193–202

    Article  Google Scholar 

  • Díaz A, Féral JF, David B et al (2011) Evolutionary pathways among shallow and deep-sea echinoids of the genus Sterechinus in the Southern Ocean. Deep-Sea Res Pt II 58:205–211

    Article  Google Scholar 

  • Domack E, Ishman S, Leventer A et al (2005) A chemotrophic ecosystem found beneath Antarctic ice shelf. EOS Trans AGU 86:269–278

    Article  Google Scholar 

  • Downey RV, Griffiths HJ, Linse K et al (2012) Diversity and distribution patterns in high southern latitude sponges. PLoS ONE 7(7):1–16:e41672. doi:10.1371/journal.pone.0041672

  • Eléaume M, Hemery LG, Bowden DA et al (2011) A large new species of the genus Ptilocrinus (Echinodermata, stalked Crinoidea, Hyocrinidae) from Antarctic seamounts. Polar Biol 34:1385–1397

    Article  Google Scholar 

  • Fabry VJ, McClintock JB, Mathis JT et al (2009) Ocean acidification at high latitudes: the bellwether. Oceanography 22(4):160–171

    Article  Google Scholar 

  • Folmer O, Black M, Hoeh W et al (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299

    CAS  Google Scholar 

  • Fonseca G, Muthumbi AW, Vanreusel A (2007) Species richness of the genus Molgolaimus (Nematoda) from local to ocean scale along continental slopes. Mar Ecol 28(4):446–459. doi:10.1111/j.1439-0485.2007.00202.x

    Article  Google Scholar 

  • German CR, Livermore RA, Baker ET et al (2000) Hydrothermal plumes above the East Scotia Ridge: an isolated high-latitude back-arc spreading centre. Earth Planet Sci Lett 184(1):241–250. doi:10.1016/S0012-821X(00)00319-8

    CAS  Article  Google Scholar 

  • Gheerardyn H, Veit-Köhler G (2009) Diversity and large-scale biogeography of Paramesochridae (Copepoda, Harpacticoida) in South Atlantic abyssal plains and the deep Southern Ocean. Deep-Sea Res Pt I 56:1804–1815

    Article  Google Scholar 

  • Göbbeler K, Klussmann-Kolb A (2010) Out of Antarctica? New insights into the phylogeny and biogeography of the Pleurobranchomorpha (Mollusca, Gastropoda). Mol Phylogenet Evol 55:996–1007

    Article  Google Scholar 

  • Goldberg EE, Roy K, Lande R et al (2005) Diversity, endemism and age distributions in macroevolutionary sources and sinks. Am Nat 165(6):623–633

    Article  Google Scholar 

  • González-Wevar CA, Nakano T, Canete JI et al (2010) Molecular phylogeny and historical biogeography of Nacella (Patellogastropoda: Nacellidae) in the Southern Ocean. Mol Phylogenet Evol 56:115–124

    Article  Google Scholar 

  • Grant RA, Griffiths H, Steinke D et al (2011) Antarctic DNA barcoding; a drop in the ocean? Polar Biol 34:775–780

    Article  Google Scholar 

  • Griffiths HJ (2010) Antarctic marine biodiversity—what do we know about the distribution of life in the Southern Ocean? PLoS ONE 5:e11683

    Article  CAS  Google Scholar 

  • Griffiths HJ, Linse K, Crame JA (2003) SOMBASE–Southern Ocean mollusc database: a tool for biogeographic analysis in diversity and ecology. Org Div Evol 3:207–213

    Article  Google Scholar 

  • Griffiths HJ, Barnes DKA, Linse K (2009) Towards a generalized biogeography of the Southern Ocean. J Biogeogr 36:162–177

    Article  Google Scholar 

  • Griffiths HJ, Danis B, Clarke A (2011) Quantifying Antarctic marine biodiversity: the SCARMarBIN data portal. Deep-Sea Res Pt II 58(1–2):18–29

    Google Scholar 

  • Gutt J (2007) Antarctic macro-zoobenthic communities: a review and a classification. Antarc Sci 19(2):165–182

    Article  Google Scholar 

  • Gutt J, Piepenburg D (2003) Scale-dependent impact on diversity of Antarctic benthos caused by grounding of icebergs. Mar Ecol Progr Ser 253:77–83

    Article  Google Scholar 

  • Gutt J, Sirenko BI, Smirnov IS et al (2004) How many macrozoobenthic species might inhabit the Antarctic shelf? Antarc Sci 16:11–16

    Article  Google Scholar 

  • Gutt J, Barratt I, Domack E et al (2011) Biodiversity change after climate-induced ice-shelf collapse in the Antarctic. Deep-Sea Res Pt II 58:74–83

    Article  Google Scholar 

  • Gutt J, Zurell D, Bracegridle TJ et al (2012) Correlative and dynamic species distribution modelling for ecological predictions in the Antarctic: a cross-disciplinary concept. Polar Res 31:11091. doi:10.3402/polar.v31i0.11091

    Article  Google Scholar 

  • Halpern BS, Walbridge S, Selkoe KA et al (2008) A global map of human impact on marine ecosystems. Science 319:948

    CAS  Article  Google Scholar 

  • Hauquier F, Ingels J, Gutt J et al (2011) Characterisation of the nematode community of a low-activity cold seep in the recently ice-shelf free Larsen B area, Eastern Antarctic Peninsula. PLoS ONE 6(7):e22240. doi:10.1371/journal.pone.0022240

    CAS  Article  Google Scholar 

  • Havermans C, Nagy ZT, Sonet G et al (2010) Incongruence between molecular phylogeny and morphological classification in amphipod crustaceans: a case study of Antarctic lysianassoids. Mol Phylogenet Evol 55:202–209

    Article  Google Scholar 

  • Hebert PDN, Ratnasingham S, de Waard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc Roy Soc Lond B 270:S96–S99

    CAS  Article  Google Scholar 

  • Hedgpeth JW (1969) Introduction to Antarctic Zoogeography. Antarctic Map Folio Series, New York

    Google Scholar 

  • Held C (2000) Phylogeny and biogeography of serolid isopods (Crustacea, Isopoda, Serolidae) and the use of ribosomal expansion segments in molecular systematics. Mol Phylogenet Evol 15(2):165–178

    CAS  Article  Google Scholar 

  • Held C (2001) No evidence for slow-down of molecular substitution rates at subzero temperatures in Antarctic serolid isopods (Crustacea, Isopoda, Serolidae). Polar Biol 24:497–501

    Article  Google Scholar 

  • Held C, Wägele JW (2005) Cryptic speciation in the giant Antarctic isopod Glyptonotus antarcticus (Isopoda: Valvifera: Chaetiliidae). Sci Mar 69(2):175–181

    Google Scholar 

  • Hemery LG, Eléaume M, Roussel V et al (2012) Comprehensive sampling reveals circumpolarity and sympatry in seven mitochondrial lineages of the Southern Ocean crinoid species Promachocrinus kerguelensis (Echinodermata). Mol Ecol 21(10):2502–2518

    CAS  Article  Google Scholar 

  • Hétérier V, David B, De Ridder C et al (2008) Ectosymbiosis is a critical factor in the local benthic biodiversity of the Antarctic deep sea. Mar Ecol Progr Ser 364:67–76

    Article  Google Scholar 

  • Hofmann GE, Todgham AE (2010) Living in the now: physiological mechanisms to tolerate a rapidly changing environment. Annu Rev Physiol 72:127–145

    CAS  Article  Google Scholar 

  • Hosie G, Koubbi P, Riddle M et al (2011) CEAMARC, the Collaborative East Antarctic Marine Census for the Census of Antarctic Marine Life (IPY # 53): an overview. Pol Sci 5(2):75–87

    Article  Google Scholar 

  • Hunter RL, Halanych KM (2008) Evaluating connectivity in the brooding brittle star Astrotoma agassizii across the Drake Passage in the Southern Ocean. J Hered 99:137–148

    CAS  Article  Google Scholar 

  • Ingels J, Vanhove S, De Mesel I et al (2006) The biodiversity and biogeography of the free-living nematode genera Desmodora and Desmodorella (family Desmodoridae) at both sides of the Scotia Arc. Polar Biol 29:936–949

    Article  Google Scholar 

  • Ingels J, Vanreusel A, Brandt A et al (2012) Possible effects of global environmental changes on Antarctic benthos: a synthesis across five major taxa. Ecol Evol 2:453–485

    Article  Google Scholar 

  • Jamieson RE, Rogers AD, Billett DSM et al (2012) Patterns of marine bacterioplankton biodiversity in the surface waters of the Scotia Arc, Southern Ocean. FEMS Microbiol Ecol 80(2):452–468

    CAS  Article  Google Scholar 

  • Janecki T, Kidawa A, Potocka M (2010) The effects of temperature and salinity on vital biological functions of the Antarctic crustacean Serolis polita. Polar Biol 33:1013–1020

    Article  Google Scholar 

  • Janosik AM, Halanych KM (2010) Unrecognized Antarctic biodiversity: a case study of the genus Odontaster (Odontasteridae; Asteroidea). Integr Comp Biol:1–12

  • Kaiser S, Barnes DKA (2008) Southern Ocean deep-sea biodiversity; sampling strategies and predicting responses to climate change? Climate Res 37(2–3):121–270

    Google Scholar 

  • Kaiser S, Barnes DKA, Brandt A (2007) Slope and deep-sea abundance across scales: southern Ocean isopods show how complex the deep sea can be. Deep-Sea Res Pt II 54:1776–1789

    Article  Google Scholar 

  • Kaiser S, Barnes DKA, Sands CJ et al (2009) Biodiversity of an unknown Antarctic Sea: assessing isopod richness and abundance in the first benthic survey of the Amundsen continental shelf. Mar Biodiv 39(1):27–43

    Article  Google Scholar 

  • Kawaguchi S, Kurihara H, King R et al (2011) Will krill fare well under Southern Ocean acidification? Biol Lett 7(2):288–291

    Article  Google Scholar 

  • Khatiwala S, Primeau F, Hall T (2009) Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature 462:346–349

    CAS  Article  Google Scholar 

  • Knox GA, Lowry JK (1977) A comparison between the benthos of the Southern Ocean and the North Polar Ocean with special reference to the amphipods and the Polychaeta. In: Dunbar MJ (ed) Polar oceans. Arctic Institute of North America, Calgary, pp 423–462

    Google Scholar 

  • Krabbe K, Leese F, Mayer C et al (2010) Cryptic mitochondrial lineages in the widespread pycnogonid Colossendeis megalonyx Hoek, 1881 from Antarctic and Subantarctic waters. Polar Biol 33:281–292

    Article  Google Scholar 

  • Kroeker KJ, Kordas RL, Crim RN et al (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13:1419–1434

    Article  Google Scholar 

  • Kröger K, Rowden AA (2008) Polychaete assemblages of the northwestern Ross Sea shelf: worming out the environmental drivers of Antarctic macrobenthic assemblage composition. Polar Biol 31:971–989

    Article  Google Scholar 

  • Kühl S, Schneppenheim R (1986) Electrophoretic investigation of genetic variation in two krill species Euphausia superba and E. crystallorophias (Euphausiidae). Polar Biol 6(1):17–23

    Article  Google Scholar 

  • la Salle J, Wheeler QD, Jackway P et al (2009) Accelerating taxonomic discovery through automated character extraction. Zootaxa 2217:43–55

    Google Scholar 

  • Lawver LA, Gahagan LM (2003) Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeogr Palaeocl 198:11–37

    Article  Google Scholar 

  • Leese F, Agrawal S, Held C (2010) Long-distance island hopping without dispersal stages: transportation across major zoogeographic barriers in a Southern Ocean isopod. Naturwissenschaften. doi:10.1007/s00114-010-0674-y

    Google Scholar 

  • Leese F, Brand P, Rozenberg A et al (2012) Exploring Pandora’s box: potential and pitfalls of low coverage genome surveys for evolutionary biology. PLoS ONE 7(11):e49202. doi:10.1371/journal.pone.0049202

    CAS  Article  Google Scholar 

  • Linse K, Griffiths HJ, Barnes DKA et al (2006) Biodiversity and biogeography of Antarctic and sub-Antarctic Mollusca. Deep-Sea Res Pt II 53:985–1008

    Article  Google Scholar 

  • Lörz AN, Maas EW, Linse K et al (2009) Do circum-Antarctic species exist in peracarid Amphipoda? A case study in the genus Epimeria Costa, 1851 (Crustacea, Peracarida, Epimeriidae). ZooKeys 18:91–128

    Google Scholar 

  • Lörz AN, Kaiser S, Bowden DA (2013) Macrofaunal crustaceans in the benthic boundary layer from the shelf break to abyssal depths in the Ross Sea (Antarctica). Polar Biol 36:445–451. doi:10.1007/s00300-012-1269-1

    Article  Google Scholar 

  • Mahon AR, Thornhill DJ, Norenburg JL et al (2010) DNA uncovers Antarctic nemertean biodiversity and exposes a decades-old cold case of asymmetric inventory. Polar Biol 33:193–202

    Article  Google Scholar 

  • Majoran S, Dingle RV (2002) Cenozoic deep-sea ostracods from Maud Rise, Weddell Sea, Antarctica (ODP Site 689): a palaeoceanographical perspective. Geobios 35(1):137–152

    Article  Google Scholar 

  • Marsh L, Copley J, Huvenne V et al (2012) Microdistribution of faunal assemblages at deep-sea hydrothermal vents in the Southern Ocean. PLoS ONE 7(10):e48348. doi:10.1371/journal.pone.0048348

    CAS  Article  Google Scholar 

  • Martin AP, Palumbi SR (1993) Body size, metabolic rate, generation time, and the molecular clock. Proc Natl Acad Sci USA 90:4087–4091

    CAS  Article  Google Scholar 

  • Menzies RJ, Schultz GA (1966) Antarctic Isopod Crustaceans. I. First photographs of isopod Crustaceans on the Deep-sea Floor. Int Revue ges Hydrobiol 51(2):225–227

    Google Scholar 

  • Meredith MP, King JC (2005) Climate change in the ocean to the west of the Antarctic Peninsula during the second half of the 20th century. Geophys Res Lett 32:L19604

    Article  Google Scholar 

  • Mikhalevich VI (2004) The general aspects of the distribution of Antarctic foraminifera. Micropaleontology 50(2):179–194

    Google Scholar 

  • Mora C, Sale P (2011) Ongoing global biodiversity loss and the need to move beyond protected areas: a review of the technical and practical shortcoming of protected areas on land and sea. Mar Ecol Progr Ser 434:251–266

    Article  Google Scholar 

  • Moran AL, Woods HA (2012) Why might they be giants? Towards an understanding of polar gigantism. J Exp Biol 215:1995–2002. doi:10.1242/jeb.067066

    Article  Google Scholar 

  • Moy AD, Howard WR, Bray SG (2009) Reduced calcification in modern Southern Ocean planktonic foraminifera. Nat Geosci 2:276–280

    CAS  Article  Google Scholar 

  • Mulvaney R, Abram NJ, Hindmarsh RCA et al (2012) Recent Antarctic Peninsula warming relative to holocene climate and ice-shelf history. Nature. doi:10.1038/nature11391

    Google Scholar 

  • Murray J (1895) A summary of the scientific results of the voyage of H.M.S. Challenger during the years 1872–76. Second part, pp 1432–1462

  • Newman L, Convey P, Gibson JAE et al (2009) Antarctic paleobiology: glacial refugia and constraints on past icesheet reconstructions. PAGES News 17:22–24

    Google Scholar 

  • Norman JR (1937) Coast fishes. Part II. The Patagonian region. Discovery Rep 16:1–150

    Google Scholar 

  • Orr JC, Fabry VJ, Aumont O et al (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    CAS  Article  Google Scholar 

  • Page TJ, Linse K (2002) More evidence of speciation and dispersal across the Antarctic Polar Front through molecular systematics of Southern Ocean Limatula (Bivalvia: Limidae). Polar Biol 25:818–826

    Google Scholar 

  • Pawlowski J, Fahmi J, Lecroq B et al (2007) Bipolar gene flow in deep-sea benthic foraminifera. Mol Ecol 16:4089–4096

    CAS  Article  Google Scholar 

  • Pearse JS, McClintock JB, Bosch I (1991) Reproduction of Antarctic benthic marine invertebrates: tempos, modes, and timing. Am Zool 421:37–42

    Google Scholar 

  • Peck LS (2005) Prospects for surviving climate change in Antarctic aquatic species. Front Zool 2:9

    Article  Google Scholar 

  • Peck LS (2008) Brachiopods and climate change. Earth Env Sci Trans Roy Soc Edinburgh 98:451–456

    Google Scholar 

  • Peck LS, Webb K, Bailey D (2004) Extreme sensitivity of biological function to temperature in Antarctic marine species. Funct Ecol 18:625–630

    Article  Google Scholar 

  • Peck LS, Convey P, Barnes DKA (2006) Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biol Rev 81(1):75–109

    Article  Google Scholar 

  • Peck LS, Clark MS, Morley SA et al (2009) Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Funct Ecol 23(2):248–256

    Article  Google Scholar 

  • Peck L, Morley S, Clark M (2010) Poor acclimation capacities in Antarctic marine ectotherms. Mar Biol 157(9):2051–2059

    Article  Google Scholar 

  • Pfenninger M, Schwenk K (2007) Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evol Biol 7:e121

    Article  Google Scholar 

  • Pierrat B, Saucède T, Laffont R et al (2012) Large-scale distribution analysis of Antarctic echinoids using ecological niche modelling. Mar Ecol Progr Ser 463:215–230

    Article  Google Scholar 

  • Pörtner HO (2008) Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar Ecol Prog Ser 373:203–217

    Article  CAS  Google Scholar 

  • Pörtner HO, Peck L, Somero G (2007) Thermal limits and adaptation in marine Antarctic ectotherms: an integrative view. Philos Trans Roy Soc B Biol Sci 362:2233–2258

    Article  CAS  Google Scholar 

  • Post AL, O’Brien PE, Beaman RJ et al (2010) Physical controls on deep-water coral communities on the George V Land slope, East Antarctica. Antarc Sci 22:371–378. doi:310.1017/S0954102010000180

    Article  Google Scholar 

  • Poulin E, Palma AT, Féral JP (2002) Evolutionary versus ecological success in Antarctic benthic invertebrates. Trends Ecol Evol 17:218–222

    Article  Google Scholar 

  • Rahmann H, Schneppenheim R, Hilbig R et al (1984) Variability in brain ganglioside composition: a further molecular mechanism beside serum antifreeze-glykoproteins for adaptation to cold in Antarctic and Arctic-boreal fishes. Polar Biol 3(2):119–125

    CAS  Article  Google Scholar 

  • Rathburn AE, Pichon JJ, Ayress MA et al (1997) Microfossil and stable-isotope evidence for changes in Late Holocene palaeoproductivity and palaeoceanographic conditions in the Prydz Bay region of Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 131:485–510

    Article  Google Scholar 

  • Raupach MJ, Mayer C, Malyutina M et al (2009) Multiple origins of deep-sea Asellota (Crustacea: Isopoda) from shallow waters revealed by molecular data. Proc Roy Soc Lond B 276:799–808

    CAS  Article  Google Scholar 

  • Regan CT (1914) Fishes. British Antarctic (‘Terra Nova’) expedition, 1910. Natural history report. Zool Fish Terra Nova Exped 1:1–54

    Google Scholar 

  • Riddle MJ, Craven M, Goldsworthy PM et al (2007) A diverse benthic assemblage 100 km from open water under the Amery Ice Shelf, Antarctica. Paleoceanography 22 (P12):P1204. doi:10.1029/2006PA001327

  • Riehl T, Kaiser S (2012) Conquered from the deep sea? A new deep-sea isopod species from the Antarctic shelf shows pattern of recent colonization. PLoS ONE 7(11):e49354. doi:10.1371/journal.pone.0049354

    CAS  Article  Google Scholar 

  • Rintoul S, Speer K, Hofmann E et al (2009) Southern Ocean Observing System (SOOS): Rationale and strategy for sustained observations of the Southern Ocean. Community White Paper. Ocean Obs-09. Venice, Italy

  • Rogers AD (2012) Evolution and biodiversity of antarctic organisms—a molecular perspective. In: Rogers AD, Johnston NM, Murphy EJ, Clarke A (eds), Antarctica: an extreme environment in a changing world. Phil Trans Roy Soc Lond 417–467

  • Rogers AD, Tyler PA, Connelly DP et al (2012) The discovery of new deep-sea hydrothermal vent communities in the Southern Ocean and implications for biogeography. PLoS Biol 10(11). doi:10.1371/journal.pbio.1001234

  • Römisch K, Matheson T (2003) Cell biology in the Antarctic: studying life in the freezer. Nat Cell Biol 5:3–6. doi:10.1038/ncb0103-3

    Article  CAS  Google Scholar 

  • Ruhl HA, Ellena JA, Smith KL Jr (2008) Connections between climate, food limitation, and carbon cycling in abyssal sediment communities. Proc Natl Acad Sci USA 105:17006–17011

    CAS  Article  Google Scholar 

  • Schiaparelli S, Alvaro MC, Bohn J et al (2010) “Hitchhiker” polynoid polychaetes in cold deep waters and their potential influence on benthic soft bottom food webs. Antarc Sci 22(4):399–407

    Article  Google Scholar 

  • Schiaparelli S, Danis B, Wadley V et al (2013) The Census of Antarctic Marine Life (CAML): the first available baseline for Antarctic marine biodiversity. In: Verde C, di Prisco G (eds) Adaptation and evolution in marine environments, the impacts of global change on biodiversity. Springer Book Series: From Pole to Pole (Series Eds: Kallenborn R, di Prisco G, Walton D, Barr S) 2, pp 3–19

  • Schüller M (2011) Evidence for a role of bathymetry and emergence in speciation in the genus Glycera (Glyceridae, Polychaeta) from the deep Eastern Weddell Sea. Polar Biol 34:549–564

    Article  Google Scholar 

  • Sewell MA, Hofmann GE (2011) Antarctic echinoids and climate change: a major impact on brooding forms. Glob Change Biol 17:734–744

    Article  Google Scholar 

  • Sigman DM, Hain MP, Haug GH (2010) The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 466(7302):47–55

    CAS  Article  Google Scholar 

  • Smale DA, Barnes DKA, Fraser KPP et al (2008a) Benthic community response to iceberg scouring at an intensely disturbed shallow water site at Adelaide Island Antarctica. Mar Ecol Prog Ser 355:85–94

    Article  Google Scholar 

  • Smale DA, Brown KM, Barnes DKA et al (2008b) Ice scour disturbance in Antarctic waters. Science 321:371

    CAS  Article  Google Scholar 

  • Somero GN (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine the ‘winners’ and ‘losers’. J Exp Biol 213:912–920

    CAS  Article  Google Scholar 

  • Strugnell JM, Rogers AD, Prodöhl PA et al (2008) The thermohaline expressway: the Southern Ocean as a centre of origin for deep-sea octopuses. Cladistics 24:853–860

    Article  Google Scholar 

  • Strugnell JM, Cherel Y, Cooke IR et al (2011) The Southern Ocean: source and sink? Deep-Sea Res Pt II 58:196–204

    CAS  Article  Google Scholar 

  • Strugnell JM, Watts PC, Smith J et al (2012) Persistent genetic signatures of historic climatic events in an Antarctic octopus. Mol Ecol 21(11):2775–2787

    CAS  Article  Google Scholar 

  • Terauds A, Chown SL, Morgan F et al (2012) Conservation biogeography of the Antarctic. Divers Distrib 18(7):726–741

    Article  Google Scholar 

  • Thorson G (1950) Reproduction and larval ecology of marine bottom invertebrates. Biol Rev Camb Philos Soc 25:1–45

    Article  Google Scholar 

  • Tin T, Fleming ZL, Hughes KA et al (2009) Impacts of local human activities on the Antarctic environment. Antarc Sci 21:3–33

    Article  Google Scholar 

  • Trivelpiece WZ, Hinke JT, Miller AK et al (2011) Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. Proc Natl Acad Sci 108:7625–7628

    CAS  Article  Google Scholar 

  • Trontelj P, Fiser C (2009) Cryptic species diversity should not be trivialised. Syst Biodiver 7:1–3

    Article  Google Scholar 

  • Van Hannen EJ, Veninga M, Bloem J et al (1999) Genetic changes in bacterial community structure associated with protistan grazers. Arch Hydrobiol 145:25–38

    Google Scholar 

  • Vaughan DG, Barnes DKA, Fretwell PT et al (2011) Potential seaways across West Antarctica. Geochem Geophys Geosyst 12:Q10004

    Article  Google Scholar 

  • Wakeley J (2010) Natural selection and coalescent theory. In: Bell MA, Futuyma DJ, Eanes WF, Levinton JS (eds) Evolution since Darwin: the first 150 years. Sinauer and Associates, Sunderland, MA, pp 119–149

    Google Scholar 

  • Waller CL, Worland MR, Convey P et al (2006) Ecophysiological strategies of Antarctic intertidal invertebrates faced with freezing stress. Polar Biol 29:1077–1083

    Article  Google Scholar 

  • West NJ, Obernosterer I, Zemb O et al (2008) Major differences of bacterial diversity and activity inside and outside of a natural iron-fertilized phytoplankton bloom in the Southern Ocean. Environ Microbiol 10:738–756

    CAS  Article  Google Scholar 

  • White MG (1984) Marine benthos. In: Laws RM (ed) Antarctic ecology, 2nd edn. Academic Press, London, pp 421–461

    Google Scholar 

  • Whitehouse MJ, Meredith MP, Rothery P et al (2008) Rapid warming of the ocean around South Georgia, Southern Ocean, during the 20th Century: forcings, characteristics and implications for lower trophic levels. Deep-Sea Res I 55:1218–1228

    Article  Google Scholar 

  • Wilson NG, Hunter RL, Lockhart SJ et al (2007) Multiple lineages and absence of panmixia in the ‘circumpolar’ crinoid Promachocrinus kerguelensis from the Atlantic sector of Antarctica. Mar Biol 152:895–904

    Article  Google Scholar 

  • Wilson NG, Schrödl M, Halanych KM (2009) Ocean barriers and glaciation: evidence for explosive radiation of mitochondrial lineages in the Antarctic sea slug Doris kerguelenensis (Mollusca, Nudibranchia). Mol Ecol 18:965–984

    Article  Google Scholar 

  • Würzberg L, Peters J, Schüller M et al (2011) Diet insights of deep-sea polychaetes derived from fatty acid analyses. Deep-Sea Res Pt II 58(1–2):153–162

    Google Scholar 

  • Yasuhara M, Kato M, Ikeya N et al (2007) Modern Benthic Ostracodes from Lützow-Holm Bay, East Antarctica: paleoceanographic, paleobiogeographic, and evolutionary significance. Micropaleontology 53(6):469–496

    Article  Google Scholar 

  • Yasuhara M, Cronin TM, Hunt G et al (2009) Deep-Sea ostracods from the South Atlantic sector of the Southern Ocean during the last 370,000 years. J Paleontol 83:914–930

    Article  Google Scholar 

  • Yasuhara M, Hunt G, Dowsett HJ et al (2012) Latitudinal species diversity gradient of marine zooplankton for the last three million years. Ecol Lett 15:1174–1179

    Article  Google Scholar 

  • Young JS, Peck LS, Matheson T (2006) The effects of temperature on walking and righting in temperate and Antarctic crustaceans. Polar Biol 29:978–987

    Article  Google Scholar 

Download references

Acknowledgments

Ideas for this manuscript were initiated during a workshop on ‘Southern Ocean benthic biodiversity and distribution patterns’ held in Wilhelmshaven, Germany, in March 2010. We are grateful to Victoria Wadley (Census of Antarctic Marine Life) and Pedro Martínez Arbizu (Census of the Diversity of Abyssal Marine Life) for providing logistical and financial support for hosting this workshop. Katrin Linse (BAS) is thanked for valuable comments on an earlier draft of the manuscript. Additional funding was gratefully received from the German Research Foundation (DFG, code KA 2857/1-1) and the German Academic Exchange Service (DAAD) (S. Kaiser). S.N. Brandão was a Alexander von Humboldt fellow and also received support from SYNTHESYS and Encyclopedia of Life. C. Arango acknowledges support from the Australian Antarctic Science Grants (project AA3010) and CAML and the organizers of the Wilhelmshaven workshop for travel funding. NIWA staff was supported by the New Zealand Government under the New Zealand IPY-CAML Project (IPY2007-01); project governance provided by the Ministry of Fisheries Science Team and the Ocean Survey 20/20 CAML Advisory Group (Land Information New Zealand, Ministry of Fisheries, Antarctica New Zealand, Ministry of Foreign Affairs and Trade, and National Institute of Water and Atmosphere Ltd); part-funding was provided by the Ministry of Science and Innovation project COBR1302 (Biodiversity & Biosecurity). BAS staff was supported by the British Antarctic Survey Polar Science for Planet Earth Programme. A. Brandt acknowledges the support of the German Research Foundation (DFG) for support of the ANDEEP and ANDEEP-SYSTCO expeditions and various Southern Ocean projects (Br 1121/22, 1-3; Br 1121/26, 1-4; Br 1121/27-1; Br 1121/28-1; Br 1121/33-1; Br 1121/34-1; Br 1121/37-1; Br 1121/38-1; Br 1121/39-1; Br 1121/40-1; Br 1121/41, 1-; Br 1121/43-1; 436 RUS 17/20/02; 436 POL 17/6/03; 436 RUS 17/91/03; 436 RUS 17/103/05; 436 RUS 17/58/06) as well as to the University of Hamburg. J. Ingels and A. Vanreusel acknowledge support from the Belgian Science Policy and the ESF IMCOAST project with contributions of Research Foundation Flanders. F. Leese and C. Held were supported by DFG grants MA 3684/2 and LE 2323/2 within the priority program 1158. B. David and C. De Ridder received support from the Belgian Science Policy (Research project SD/BA/02A; BIANZO II) and ANR Antflocks ANR ANTFLOCKS (No. 07-BLAN-0213-01). D. Janussen thanks the DFG (DFG-Projects JA 1063/14-1.2, JA-1063-17-1), and SYNTHESYS (GB-TAF 885, NL-TAF 11, ES-TAF 1705, AT-TAF 2600) for their support. C. Havermans was financially supported by the Belgian Science Policy with an “Action II” grant (contract number WI/36/H04). T. Riehl received funding from the German National Academic Foundation (Studienstiftung des Deutschen Volkes). N. Wilson’s participation was facilitated by Scripps Institution of Oceanography and an NSF OPP grant ANT-1043749. Many thanks to Arne Pallentin (NIWA, Welington, NZ) for producing Fig. 1 and to Niki Davey (NIWA, Nelson, NZ), Marc Eléaume (Muséum national d’Histoire naturelle, Paris, France), Jürgen Guerrero-Kommritz (Universidad Javeriana, Bogotá, Colombia), Christopher Mah (Smithsonian Institution, Washington D.C., USA), Rafael Martin-Ledo (Universidad de Extremadura, Badajoz, Spain) and Kate Neill (NIWA, Wellington, NZ) for their help with species identifications (Fig. 2). The authors are grateful to the constructive comments of three anonymous referees, which helped to improve an earlier version of this manuscript. This publication is a contribution to the work achieved in the course of the CAML (publication # 83), CeDAMar and ANDEEP (publication # 177) projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie Kaiser.

Additional information

Communicated by M. G. Chapman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 62 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kaiser, S., Brandão, S.N., Brix, S. et al. Patterns, processes and vulnerability of Southern Ocean benthos: a decadal leap in knowledge and understanding. Mar Biol 160, 2295–2317 (2013). https://doi.org/10.1007/s00227-013-2232-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-013-2232-6

Keywords

  • Southern Ocean
  • Meiofauna
  • Ocean Acidification
  • Biogeographic Pattern
  • Marine Protected Area