Skip to main content

Advertisement

Log in

Fauna of the green alga Cladophora glomerata in the Baltic Sea: density, diversity, and algal decomposition stage

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The green alga Cladophora glomerata (L.) is a common macrophyte in the northern Baltic Sea, where it forms drifting mats during summer. We studied the effect of its stage of decomposition on the density, diversity, and resource usage of associated meio- and macrofauna. We hypothesised that mobile species would show small variation in food preferences among decomposition stages, while high variation was expected in stationary species, as reflected in their stable isotope signatures. The assemblage structure of the fauna differed between the 3 studied algal degradation stages, Green (attached, healthy), Degraded (attached, but starting to decay), and Drift (detached, decaying). C/N ratios were highest in green algae and decreased in decaying algal stages. Variation in stable isotope ratios of stationary and mobile species supported our resource use hypothesis. The decomposition stage of C. glomerata significantly affected the carbon and nitrogen stable isotope ratios of both the alga and its main grazer species. Higher invertebrate diversity in the more decaying stages was probably facilitated by decomposer microbes adding resource types and by the proximity of the detached algal mats to the sediment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arroyo NL, Maldonado M, Walters K (2006) Within- and between-plant distribution of harpacticoid copepods in a North Atlantic bed of Laminaria ochroleuca. J Exp Mar Biol Ecol 86:309–316

    Google Scholar 

  • Arroyo NL, Aarnio K, Ólafsson E (2007) Interactions between two closely related phytal harpacticoid copepods, asymmetric positive and negative effects. J Exp Mar Biol Ecol 341:219–227

    Article  Google Scholar 

  • Bishop MJ, Coleman MA, Kelaher BP (2010) Cross-habitat impacts of species decline: response of estuarine sediment communities to changing detrital resources. Oecologia 163:517–525

    Article  Google Scholar 

  • Bonsdorff E (1992) Drifting algae and zoobenthos—effects on settling and community structure. Neth J Sea Res 30:57–62

    Article  Google Scholar 

  • Bonsdorff E, Blomqvist EM, Matilla J, Norkko A (1997) Coastal eutophication: causes, consequences and perspectives in the Archipelago areas of the northern Baltic Sea. Estuar Coast Shelf Sci 44:63–72

    Article  Google Scholar 

  • Bracken MES, Gonzalez-Dorantes CA, Stachowicz JJ (2007) Whole-community mutualism: associated invertebrates facilitate a dominant habitat-forming seaweed. Ecology 88:2211–2219

    Article  Google Scholar 

  • Catenazzi A, Donnelly MA (2007) Role of supratidal invertebrates in the decomposition of beach-cast green algae Ulva sp. Mar Ecol Pro Ser 349:33–42

    Article  Google Scholar 

  • Christie H, Norderhaug KM, Fredriksen S (2009) Macrophytes as habitat for fauna. Mar Ecol Pro Ser 396:221–233

    Google Scholar 

  • Coleman FC, Williams SL (2002) Overexploiting marine ecosystem engineers: potential consequences for biodiversity. Trends Ecol Evol 17:40–44

    Article  Google Scholar 

  • Como S, Magni P, Baroli M, Casu D, De Falco G, Floris A (2008) Comparative analysis of macrofaunal species richness and composition in Posidonia oceanica, Cymodocea nodosa and leaf litter beds. Mar Biol 153:1087–1101

    Article  Google Scholar 

  • Coull BC, Wells JBJ (1983) Refuges from fish predation: experiments with phytal meiofauna from the New Zealand rocky intertidal. Ecology 64:1599–1609

    Article  Google Scholar 

  • De Troch M, Steinarsdóttir MB, Chepurnov V, Ólafsson E (2005) Grazing on diatoms by harpacticoid copepods: species-specific density-dependent uptake and microbial gardening. Aquat Microb Ecol 39:135–144

    Article  Google Scholar 

  • De Troch M, Chepurnov V, Gheerardyn H, Vanreusel A, Ólafsson E (2006) Food-size selectivity of harpacticoid copepods grazing on diatoms. J Exp Mar Bio Ecol 332:1–11

    Article  Google Scholar 

  • De Troch M, Chepurnov V, Vincx M, Ólafsson E (2008) The effect of Fucus vesiculosus on the grazing of harpacticoid copepods on diatom biofilms. J Sea Res 60:139–143

    Article  Google Scholar 

  • Diaz RJ, Rosenberg R (1995) Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr Mar Biol Annu Rev 33:245–303

    Google Scholar 

  • Fockedey N, Mees J (1999) Feeding of the hyperbenthic mysid Neomysis integer in the maximum turbidity zone of the Elbe, Westerschelde and Gironde estuaries. J Mar Sys 22:207–228

    Article  Google Scholar 

  • Gacia E, Duarte CM, Middelburg JJ (2002) Carbon and nutrient deposition in a Mediterranean seagrass (Posidonia oceanica) meadow. Limnol Oceanogr 47(1):23–32

    Article  CAS  Google Scholar 

  • Gee JM, Warwick RM (1994) Metazoan community structure in relation to the fractal dimensions of marine macroalgae. Mar Ecol Prog Ser 103:141–150

    Article  Google Scholar 

  • Gibbons MJ (1988) Impact of predation by juvenile Clinus supersiliosus on phytal meiofauna: are fish important as predators? Mar Ecol Prog Ser 45:13–22

    Article  Google Scholar 

  • Godbold JA, Bulling MT, Solan M (2011) Habitat structure mediates biodiversity effects on ecosystem properties. Proc R Soc Lond [Biol] 278:2510–2518

    Article  CAS  Google Scholar 

  • Goecke F, Labes A, Wiese J, Imhoff JF (2010) Chemical interactions between marine macroalgae and bacteria. Mar Ecol Prog Ser 409:267–299

    Article  CAS  Google Scholar 

  • Gonçalves AMM, DeTroch M, Marques SC, Pardal MA, Azeiteiro UM (2010) Spatial and temporal distribution of harpacticoid copepods in Mondego estuary. J Mar Biol Assoc UK 90(7):1279–1290

    Article  Google Scholar 

  • Gore RH, Gallaher EE, Scotto LE, Wilson KA (1981) Studies on decapod crustacea from the Indian region of Florida XI community composition, structure, biomass, and species-areal relationships of sea grass and drift algae-associated macrocrustaceans. Estuar Coast Shelf Sci 12:485–508

    Article  Google Scholar 

  • Hay ME, Renaud PE, Fenical W (1988) Large mobile versus small sedentary herbivores and their resistance to seaweed chemical defenses. Oecologia 75:246–252

    Article  Google Scholar 

  • Hicks GRF (1980) Structure of phytal harpacticoid copepod assemblages and the influence of habitat complexity and turbidity. J Exp Mar Bio Ecol 44:157–192

    Article  Google Scholar 

  • Hicks GRF, Coull BC (1983) The ecology of marine meiobenthic harpacticoid copepods. Oceanogr Mar Biol Annu Rev 21:67–175

    Google Scholar 

  • Hill JM, McQuaid CD (2009) Variability in the fractionation of stable isotopes during degradation of two intertidal red algae. Estuar Coast Shelf Sci 82:397–405

    Article  CAS  Google Scholar 

  • Holmquist JG (1997) Disturbance and gap formation in a marine benthic mosaic: influence of shifting macroalgal patches on seagrass structure and mobile invertebrates. Mar Ecol Prog Ser 158:121–130

    Article  Google Scholar 

  • Hull SL (1997) Seasonal changes in diversity and abundance of ostracods on four species of intertidal algae with differing structural complexity. Mar Ecol Prog Ser 161:71–82

    Article  Google Scholar 

  • Irlandi EA (1994) Large- and small-scale effects of habitat structure on rates of predation: how percent coverage of seagrass affects rates of predation and siphon nipping on an infaunal bivalve. Oecologia 98:176–183

    Article  Google Scholar 

  • Jansson A-M (1967) The food-web of the Cladophora-belt fauna. Helgoländer wiss. Meeresunters 15:574–588

    Article  Google Scholar 

  • Jarvis SC, Seed R (1996) The meiofauna of Ascophyllum nodosum (L) Le Jolis: characterization of the assemblages associated with two common epiphytes. J Exp Mar Biol Ecol 199:249–267

    Article  Google Scholar 

  • Jaschinski S, Brepohl DC, Sommer U (2011) Seasonal variation in carbon sources of mesograzers and small predators in an eelgrass community: stable isotope and fatty acid analyses. Mar Ecol Prog Ser 431:69–82

    Article  Google Scholar 

  • Jormalainen V, Honkanen T, Heikkilä N (2001) Feeding preferences and performance of a marine isopod on seaweed hosts: cost of habitat specialization. Mar Ecol Prog Ser 220:219–230

    Article  Google Scholar 

  • Kraufvelin P, Salovius S (2004) Animal diversity in Baltic rocky shore macroalgae: can Cladophora glomerata compensate for lost Fucus vesiculosus? Estuar Coast Shelf Sci 61:369–378

    Article  Google Scholar 

  • Kraufvelin P, Perus J, Bonsdorff E (2011) Scale-dependent distribution of soft-bottom infauna and possible structuring forces in low diversity systems. Mar Ecol Prog Ser 426:U13–U38

    Article  Google Scholar 

  • Kristensen E (1994) Decomposition of macroalgae, vascular plants and sediment detritus in seawater—use of stepwise thermogravimetry. Biogeochemistry 26:1–24)

    Google Scholar 

  • Macha’s R, Santos R, Peterson B (2006) Elemental and stable isotope composition of Zostera noltii (Horneman) leaves during the early phases of decay in a temperate mesotidal lagoon. Estuar Coast Shelf Sci 66:21–29

    Article  Google Scholar 

  • Maddi P, Carman KR, Fry B, Wissel B (2006) Use of primary production by harpacticoid copepods in a Louisiana salt-marsh food web. In: Kromkamp JC, de Brouwer JFC, Blanchard GF, Forster RM, Créach V (eds) Functioning of microphytobenthos in estuaries. Royal Dutch Academy of Arts and Sciences, Amsterdam, pp 65–81

  • McDonald PS, Bingham BL (2010) Comparing macroalgal food and habitat choice in sympatric, tube-building amphipods, Ampithoe lacertosa and Peramphithoe humeralis. Mar Biol 157:1513–1524

    Article  Google Scholar 

  • Moens T, Vincx M (1997) Observations on the feeding ecology of estuarine nematodes. J Mar Biol Assoc UK 77:211–227

    Article  Google Scholar 

  • Nicotri ME (1980) Factors involved in herbivore food preference. J Exp Mar Biol Ecol 42:13–26

    Article  Google Scholar 

  • Norkko A, Bonsdorff E (1996) Rapid zoobenthic community responses to accumulations of drifting algae. Mar Ecol Prog Ser 131:143–157

    Article  Google Scholar 

  • Norkko J, Bonsdorff E, Norkko A (2000) Drifting algal mats as an alternative habitat for benthic invertebrates: species specific responses to a transient resource. J Exp Mar Biol Ecol 248:79–104

    Article  Google Scholar 

  • Olabarria C, Lastra M, Garrido J (2007) Succession of macrofauna on macroalgal wrack of an exposed sandy beach: effects of patch size and site. Mar Environ Res 63:19–40

    Article  CAS  Google Scholar 

  • Olabarria C, Incera M, Garrido J, Rossi F (2010) The effect of wrack composition and diversity on macrofaunal assemblages in intertidal marine sediments. J Exp Mar Biol Ecol 396:18–26

    Article  Google Scholar 

  • Ólafsson EB (1988) Inhibition of larval settlement to a soft bottom benthic community by drifting algal mats: an experimental test. Mar Biol 97:571–574

    Article  Google Scholar 

  • Ólafsson E (1992) Small-scale spatial distribution of marine meiobenthos: the effects of decaying macrofauna. Oecologia 90:37–42

    Article  Google Scholar 

  • Ólafsson E, Modig H, van de Bund WJ (1999) Species specific uptake of radio-labelled phytodetritus by benthic meiofauna from the Baltic Sea. Mar Ecol Pro Ser 177:63–72

    Article  Google Scholar 

  • Pelletier AJD, Jelinski DE, Treplin M, Zimmer M (2011) Colonisation of beach-cast macrophyte Wrack patches by Talitrid amphipods: a primer. Estuar Coast 34:863–871

    Article  Google Scholar 

  • Salovius S, Kraufvelin P (2004) The filamentous green alga Cladophora glomerata as a habitat for littoral macrofauna in the northern Baltic Sea. Ophelia 58:65–78

    Article  Google Scholar 

  • Salovius S, Nyqvist M, Bonsdorff E (2005) Life in the fast lane: macrobenthos use temporary drifting algal habitats. J Sea Res 53:169–180

    Article  Google Scholar 

  • Steinarsdóttir MB, Ingólfsson A, Ólafsson E (2003) Seasonality of harpacticoids (Crustacea, Copepoda) in a tidal pool in subarctic south-western Iceland. Hydrobiologia 503:211–221

    Article  Google Scholar 

  • Steinarsdóttir MB, Ingólfsson A, Ólafsson E (2009) Trophic relationships on a fucoid shore in south-western Iceland as revealed by stable isotope analyses, laboratory experiments, field observations and gut analyses. J Sea Res 61:206–215

    Article  Google Scholar 

  • Steinberg PD, de Nys R (2002) Chemical mediation of colonization of seaweed surfaces. J Phycol 38:621–629

    Article  CAS  Google Scholar 

  • Stephenson R, Tan F, Mann K (1986) Use of stable carbon isotope ratios to compare plant material and potential consumers in a seagrass bed and a kelp bed in Nova Scotia, Canada. Mar Ecol Pro Ser 30:1–7

    Article  CAS  Google Scholar 

  • Torres-Pratts H, Schizas NV (2007) Meiofaunal colonization of decaying leaves of the red mangrove Rhizophora mangle, in southwestern Puerto Rico. Caribb J Sci 43:127–137

    Google Scholar 

  • Uku J, Bjork M, Bergman B, Diez B (2007) Characterization and comparison of prokaryotic epiphytes associated with three east African seagrasses. J Phycol 43:768–779

    Article  CAS  Google Scholar 

  • Ullberg J, Ólafsson E (2003) Free-living marine nematodes actively choose habitat when descending from the water column. Mar Ecol Pro Ser 260:141–149

    Article  Google Scholar 

  • Werry J, Lee SY (2005) Grapsid crabs mediate link between mangrove litter production and estuarine planktonic food chains. Mar Ecol Pro Ser 293:165–176

    Article  Google Scholar 

  • Zieman JC, Macko SA, Mills AL (1984) Role of seagrasses and mangroves in estuarine food webs—temporal and spatial changes in stable isotope composition and amino-acid content during decomposition. Bull Mar Sci 35:380–392

    Google Scholar 

Download references

Acknowledgments

This study was supported through a MARS travel award, a CIMO grant from the government of Finland and a European Community Mari Curie fellowship (EVK-CT-2002-50019) to NLA, and by the Foundation for Åbo Akademi University for support to KA and EB. Ragnar Elmgren gave valuable comments and suggestions on an earlier draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil Ólafsson.

Additional information

Communicated by M. Huettel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ólafsson, E., Aarnio, K., Bonsdorff, E. et al. Fauna of the green alga Cladophora glomerata in the Baltic Sea: density, diversity, and algal decomposition stage. Mar Biol 160, 2353–2362 (2013). https://doi.org/10.1007/s00227-013-2229-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-013-2229-1

Keywords