Analysis of fatty acids and fatty alcohols reveals seasonal and sex-specific changes in the diets of seabirds

Abstract

A key challenge in ecology is to find ways to obtain complete and accurate information about the diets of animals. To respond to this challenge in seabirds, traditional methods (usually stomach content analysis or observations of prey at nests) have been supplemented with indirect methods or molecular trophic markers. These techniques have the potential to extend the period of investigation outside the few short months of breeding and avoid biases. Here, we use an analysis of fatty acids (FAs) and fatty alcohols (FALs) from blood, adipose tissue and stomach oil to investigate how the diets of male and female common guillemots (Uria aalge), black-legged kittiwakes (Rissa tridactyla) and northern fulmars (Fulmarus glacialis) differed through the sampling period (prelaying and breeding season) and by sex. Diets of both sexes of all three species generally varied across the season, but sex differences were apparent only in fulmars during prelaying. Our study shows that FA/FAL analysis can provide significant insights into diets of seabirds, in particular periods of the annual cycle which are not readily studied using traditional methods.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aebischer N, Robertson P, Kenward R (1993) Compositional analysis of habitat use from radio-tracking data. Ecology 74:1313–1325

    Article  Google Scholar 

  2. Ainley DG, Spear LB, Allen SG, Ribic CA (1996) Temporal and spatial patterns in the diet of the common murre in California waters. Condor 98:691–705

    Article  Google Scholar 

  3. Annett CA, Pierotti R (1989) Chick hatching as a trigger for dietary switching in the Western Gull. Colon Waterbirds 12:4–11

    Article  Google Scholar 

  4. Arnott SA, Ruxton GD, Poloczanska ES (2002) Stochastic dynamic population model of North Sea sandeels, and its application to precautionary management procedures. Mar Ecol Prog Ser 235:223–234

    Article  Google Scholar 

  5. Barrett RT (2002) Atlantic puffin Fratercula arctica and common guillemot Uria aalge chick diet and growth as indicators of fish stocks in the Barents Sea. Mar Ecol Prog Ser 230:275–287

    Article  Google Scholar 

  6. Barrett RT, Camphuysen CJ, Anker-Nilssen T, Chardine JW, Furness RW, Garthe S, Hüppop O, Leopold MF, Montevecchi WA, Veit RR (2007) Diet studies of seabirds: a review and recommendations. ICES J Mar Sci 64:1675–1691

    Article  Google Scholar 

  7. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  Google Scholar 

  8. Bogdanova MI, Daunt F, Newell M, Phillips RA, Harris MP, Wanless S (2011) Seasonal interactions in the black-legged kittiwake, Rissa tridactyla: links between breeding performance and winter distribution. P Roy Soc B 278:2412–2418

    Article  Google Scholar 

  9. Brenninkmeijer A, Klaassen M, Stienen EWM (1997) Sandwich terns Sterna sandvicensis feeding on shell fractions. Ibis 139:397–400

    Article  Google Scholar 

  10. Cairns DK (1987) Seabirds as indicators of marine food supplies. Biol Oceanogr 5:261–271

    Google Scholar 

  11. Connan M, Mayzaud P, Cherel Y (2007) Lipids from stomach oil of procellariiform seabirds document the importance of myctophid fish in the Southern Ocean. Limnol Oceanogr 56:2445–2455

    Article  Google Scholar 

  12. Cramp S (1985) Handbook of the Birds of Europe, the middle east, and North Africa: the birds of the Western Palearctic. Oxford University Press, Oxford

  13. Croxall JP, Trathan PN, Murphy EJ (2002) Environmental change and antarctic seabird populations. Science 297:1510–1514

    Article  CAS  Google Scholar 

  14. Croxall JP, Butchart SHM, Lascelles B, Stattersfield AJ, Sullivan B, Symes A, Taylor P (2012) Seabird conservation status, threats and priority actions: a global assessment. Bird Conserv Int 22:1–34

    Article  Google Scholar 

  15. Cury PM, Boyd IL, Bonhommeau S, Anker-Nilssen T, Crawford RJM, Furness RW, Mills JA, Murphy EJ, Osterblom H, Paleczny M, Piatt JF, Roux JP, Shannon L, Sydeman WJ (2011) Global seabird response to forage fish depletion—one-third for the birds. Science 334:1703–1706

    Article  CAS  Google Scholar 

  16. Edgington E (1995) Randomisation tests. Marcel Dekker, New York

    Google Scholar 

  17. Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430:881–884

    Article  CAS  Google Scholar 

  18. Einoder LD (2009) A review of the use of seabirds as indicators in fisheries and ecosystem management. Fish Res 95:6–13

    Article  Google Scholar 

  19. Foglia TA, Cartwright AL, Gyurik RJ, Philips JG (1994) Fatty acid turnover rates in the adipose tissues of the growing chicken (Gallus domesticus). Lipids 29:497–502

    Article  CAS  Google Scholar 

  20. Forero MG, Gonzalez-Solis J, Hobson KA, Donazar JA, Bertellotti M, Blanco G, Bortolotti GR (2005) Stable isotopes reveal trophic segregation by sex and age in the southern giant petrel in two different food webs. Mar Ecol Prog Ser 296:107–113

    Article  Google Scholar 

  21. Frederiksen M, Wanless S, Harris MP, Rothery P, Wilson LJ (2004) The role of industrial fisheries and oceanographic change in the decline of North Sea black-legged kittiwakes. J Appl Ecol 41:1129–1139

    Article  Google Scholar 

  22. Frederiksen M, Edwards M, Richardson AJ, Halliday NC, Wanless S (2006) From plankton to top predators: bottom-up control of a marine food web across four trophic levels. J Anim Ecol 75:1259–1268

    Article  Google Scholar 

  23. Frederiksen M, Jensen H, Daunt F, Mavor RA, Wanless S (2008) Differential effects of a local industrial sand lance fishery on seabird breeding performance. Ecol Appl 18:701–710

    Article  Google Scholar 

  24. Furness RW, Camphuysen CJ (1997) Seabirds as monitors of the marine environment. ICES J Mar Sci 54:726–733

    Article  Google Scholar 

  25. Furness RW, Todd CM (1984) Diets and feeding of fulmars Fulmarus glacialis during the breeding season: a comparison between St Kilda and Shetland colonies. Ibis 126:379–384

    Article  Google Scholar 

  26. Gonzalez-Solis J, Croxall JP, Wood AG (2000) Sexual dimorphism and sexual segregation in foraging strategies of northern giant petrels, Macronectes halli, during incubation. Oikos 90:390–398

    Article  Google Scholar 

  27. Griffiths R, Daan S, Dijkstra C (1996) Sex identification in birds using two CHD genes. P Roy Soc B-Biol Sci 263:1251–1256

    Article  CAS  Google Scholar 

  28. Guilford TC, Meade J, Freeman R, Biro D, Evans T, Bonadonna F, Boyle D, Roberts S, Perrins CM (2008) GPS tracking of the foraging movements of Manx Shearwaters Puffinus puffinus breeding on Skomer Island, Wales. Ibis 150:462–473

    Article  Google Scholar 

  29. Hamer KC, Thompson DR, Gray CM (1997) Spatial variation in the feeding ecology, foraging ranges, and breeding energetics of northern fulmars in the north-east Atlantic Ocean. ICES J Mar Sci 54:645–653

    Article  Google Scholar 

  30. Hanson SWF, Olley J (1963) Application of the Bligh and Dyer method of lipid extraction to tissue homogenates. Biochem J 89:101–102

    Google Scholar 

  31. Harris MP, Wanless S (1985) Fish fed to young guillemots, Uria aalge, and used in display in the Isle of May, Scotland. J Zool Soc Lond 207:441–458

    Article  Google Scholar 

  32. Harris MP, Beare D, Toresen R, Nøttestad L, Kloppmann M, Dörner H, Peach K, Rushton DRA, Foster-Smith J, Wanless S (2007) A major increase in snake pipefish (Entelurus aequoreus) in northern European seas since 2003: potential implications for seabird breeding success. Mar Biol 151:973–983

    Article  Google Scholar 

  33. Harris MP, Newell M, Daunt F, Speakman JR, Wanless S (2008) Snake Pipefish Entelurus aequoreus are poor food for seabirds. Ibis 150:413–415

    Article  Google Scholar 

  34. Hatch SA (1990a) Incubation rhythm in the Fulmar Fulmarus glacialis: annual variation and sex roles. Ibis 132:515–524

    Article  Google Scholar 

  35. Hatch SA (1990b) Time allocation by Northern Fulmars Fulmarus glacialis during the breeding season. Ornis Scand 21:89–98

    Article  Google Scholar 

  36. Hatchwell B, Birkhead T, Goodburn S, Perrins J, Jones S (1992) Chick diets and food intake of nestling common guillemots Uria aalge: an inter-colony comparison. Seabird 14:15–20

    Google Scholar 

  37. Hedd A, Montevecchi WA (2006) Diet and trophic position of Leach’s storm-petrel Oceanodroma leucorhoa during breeding and moult, inferred from stable isotope analysis of feathers. Mar Ecol Prog Ser 322:291–301

    Article  CAS  Google Scholar 

  38. Hobson KA, Piatt JF, Pitochelli J (1994) Using stable isotopes to determine seabird trophic level relationships. J Anim Ecol 63:786–798

    Article  Google Scholar 

  39. Hudson AV, Furness RW (1989) The behaviour of seabirds foraging at fishing boats around Shetland. Ibis 131:225–237

    Article  Google Scholar 

  40. Ito M, Takahashi A, Kokubun N, Kitaysky AS, Watanuki Y (2010) Foraging behavior of incubating and chick-rearing thick-billed murres Uria lomvia. Aquat Biol 8:279–287

    Article  Google Scholar 

  41. Iverson SJ (2009) Tracing aquatic food webs using fatty acids: from qualitative indicators to quantitative determination. In: Arts MT, Brett MT, Kainz M (eds) Lipids in aquatic ecosystems. Springer, New York, pp 281–308

  42. Iverson SJ, Field C, Bowden WD, Blanchard W (2004) Quantitative fatty acid signature analysis: a new method for estimating predator diets. Ecol Monogr 74:211–235

    Article  Google Scholar 

  43. Iverson SJ, Springer AM, Kitaysky AS (2007) Seabirds as indicators of food web structure and ecosystem variability: qualitative and quantitative diet analyses using fatty acids. Mar Ecol Prog Ser 352:235–244

    Article  CAS  Google Scholar 

  44. Käkelä R, Käkelä A, Kahle S, Becker PH, Kelly A, Furness RW (2005) Fatty acid signatures in plasma of captive herring gulls as indicators of demersal or pelagic fish diet. Mar Ecol Prog Ser 293:191–200

    Article  Google Scholar 

  45. Käkelä A, Furness RW, Kelly A, Strandberg U, Waldron S, Käkelä R (2007) Fatty acid signatures and stable isotopes as dietary indicators in North Sea seabirds. Mar Ecol Prog Ser 342:291–301

    Article  Google Scholar 

  46. Käkelä R, Furness RW, Kahle S, Becker PH, Käkelä A (2009) Fatty acid signatures in seabird plasma are a complex function of diet composition: a captive feeding trial with herring gulls. Func Ecol 23:141–149

    Article  Google Scholar 

  47. Käkelä R, Käkelä A, Martinez-Abrain A, Sarzo B, Louzao M, Gerique C, Villuendas E, Strandberg U, Furness RW, Oro D (2010) Fatty acid signature analysis confirms foraging resources of a globally endangered Mediterranean seabird species: calibration test and application to the wild. Mar Ecol Prog Ser 398:245–258

    Article  Google Scholar 

  48. Karnovsky NJ, Hobson KA, Iverson SJ (2012) From lavage to lipids: estimating diets of seabirds. Mar Ecol Prog Ser 451:263–284

    Article  CAS  Google Scholar 

  49. Klasing KC (1998) Comparative avian nutrition. University Press, Cambridge

    Google Scholar 

  50. Lack DL (1968) Ecological adaptations for breeding in birds. Methuen, London

    Google Scholar 

  51. Lewis S, Wanless S, Wright PJ, Harris MP, Bull J, Elston DA (2001) Diet and breeding performance of black legged kittiwakes Rissa tridactyla at a North Sea colony. Mar Ecol Prog Ser 221:277–284

    Article  Google Scholar 

  52. Lewis S, Benvenuti S, Dall’Antonia L, Griffiths R, Money L, Sherratt TN, Wanless S, Hamer KC (2002) Sex-specific foraging behaviour in a monomorphic seabird. Proc R Soc B 269:1687–1693

    Article  CAS  Google Scholar 

  53. MacDonald MA (1977) The pre-laying exodus of the fulmar Fulmarus glacialis. Ornis Scand 8:33–37

    Article  Google Scholar 

  54. Macdonald MA (1980) Winter attendance of fulmars at land in NE Scotland. Ornis Scand 11:23–29

    Article  Google Scholar 

  55. Mallory ML, Gaston AJ, Forbes MR, Gilchrist HG, Cheney B, Lewis S, Thompson PM (2008) Flexible incubation rhythm in northern fulmars: a comparison between oceanographic zones. Mar Biol 154:1031–1040

    Article  Google Scholar 

  56. Mallory ML, Forbes MR, Ankney CD, Alisauskas RT (2009) Nutrient dynamics and constraints on the pre-laying exodus of High Arctic northern fulmars. Aquat Biol 4:211–223

    Article  Google Scholar 

  57. Mawhinney K, Diamond AW, Kehoe FP (1999) The use of energy, fat, and protein reserves by breeding great black-backed gulls. Can J Zool 77:1459–1464

    Article  Google Scholar 

  58. Mehlum F, Gabrielsen G (1993) The diet of high-arctic seabirds in coastal and ice-covered, pelagic. Polar Res 12:1–20

    Article  Google Scholar 

  59. Mitchell PI, Newton S, Ratcliffe N, Dunn TE (2004) Seabird populations of Britain and Ireland: results of the seabird 2000 survey. T & A D Poyser, London

    Google Scholar 

  60. Navarro J, Louzao M, Igual J, Oro D, Delgado A, Arcos J, Genovart M, Hobson K, Forero M (2009) Seasonal changes in the diet of a critically endangered seabird and the importance of trawling discards. Mar Biol 156:2571–2578

    Article  Google Scholar 

  61. Newell M, Daunt F, Kortan D, Wanless S (2006) Isle of May Seabird studies in 2006. JNCC report

  62. Ojowski U, Eidtmann C, Furness RW, Garthe S (2001) Diet and nest attendance of incubating and chick-rearing northern fulmars (Fulmarus glacialis) in Shetland. Mar Biol 139:193–1200

    Google Scholar 

  63. Ouwehand J, Leopold MF, Camphuysen CJ (2004) A comparative study of the diet of guillemots Uria aalge and Razorbills, Alca torda killed during the Tricolor oil incident in the south-eastern North Sea in January 2003. Atl Seab 6:147–164

    Google Scholar 

  64. Owen E (2008) The use of fatty acid signature analysis to investigate diets of North Sea seabirds. Ph.D. dissertation, University of Aberdeen, Aberdeen, UK

  65. Owen E, Daunt F, Wanless S (2010) Sampling avian adipose tissue: assessing a nondestructive biopsy technique. J Field Ornithol 81:92–98

    Article  Google Scholar 

  66. Phillips RA, Petersen MK, Lillendahl K, Solmundsson J, Hamer KC, Camphuysen CJ, Zonfrillo B (1999) Diet of the northern fulmar Fulmarus glacialis: reliance on commercial fisheries? Mar Biol 135:159–170

    Article  Google Scholar 

  67. Phillips RA, Silk JRD, Phalan B, Catry P, Croxall JP (2004a) Seasonal sexual segregation in two Thalassarche albatross species: competitive exclusion, reproductive role specialization or foraging niche divergence? Proc R Soc B 271:1283–1291

    Article  CAS  Google Scholar 

  68. Phillips RA, Silk JRD, Croxall JP, Afanasyev V, Briggs DR (2004b) Accuracy of geolocation estimates for flying seabirds. Mar Ecol Prog Ser 266:265–272

    Article  Google Scholar 

  69. Phillips RA, McGill RAR, Dawson DA, Bearhop S (2011) Sexual segregation in distribution, diet and trophic level of seabirds: insights from stable isotope analysis. Mar Biol 158:2199–2208

    Article  Google Scholar 

  70. Piche J, Iverson SJ, Parrish FA, Dollar R (2010) Characterization of forage fish and invertebrates in the Northwestern Hawaiian Islands using fatty acid signatures: species and ecological groups. Mar Ecol Prog Ser 418:1-U410

    Article  Google Scholar 

  71. Polito MJ, Trivelpiece WZ, Karnovsky NJ, Ng E, Patterson WP, Emslie SD (2011) Integrating stomach content and stable isotope analyses to quantify the diets of Pygoscelid Penguins. PLoS ONE 6:e26642

    Article  CAS  Google Scholar 

  72. Raclot T, Mioskowski E, Bach AC, Groscolas R (1995) Selectivity of fatty acid mobilization: a general metabolic feature of adipose tissue. Am J Physiol Regul Integr Comp Physiol 269:1060–1067

    Google Scholar 

  73. Rindorf A, Wanless S, Harris MP (2000) Effects of changes in sandeel availability on the reproductive output of seabirds. Mar Ecol Prog Ser 202:241–252

    Article  Google Scholar 

  74. Roby DD, Brink KL, Place AR (1989) Passage rates of lipid and aqueous digesta in the formation of stomach oils. Auk 106:303–313

    Google Scholar 

  75. Ronconi RA, Koopman HN, McKinstry CAE, Wong SNP, Westgate AJ (2010) Inter-annual variability in diet of non-breeding pelagic seabirds Puffinus spp at migratory staging areas: evidence from stable isotopes and fatty acids. Mar Ecol Prog Ser 419:267–282

    Article  Google Scholar 

  76. Shaffer SA, Weimerskirch H, Costa DP (2001) Functional significance of sexual dimorphism in Wandering Albatrosses, Diomedea exulans. Func Ecol 15:203–210

    Article  Google Scholar 

  77. Springer AM, Byrd GV, Iverson SJ (2007) Hot oceanography: planktivorous seabirds reveal ecosystem responses to warming of the Bering Sea. Mar Ecol Prog Ser 352:289–297

    Article  Google Scholar 

  78. Suryan RM, Irons DB, Kaufamn M, Benson J, Jodice PGR, Roby DD, Brown ED (2002) Short-term fluctuations in forage fish availability and the effect on prey selection and brood-rearing in the black-legged kittiwake Rissa tridactyla. Mar Ecol Prog Ser 236:273–287

    Article  Google Scholar 

  79. Thompson PM (2006) Identifying drivers of change: did fisheries play a role in the spread of North Atlantic fulmars? In: Boyd IL, Wanless S, Camphuysen CJ (ed) Top predators in marine ecosystems their role in monitoring and management. Cambridge University Press, Cambridge

  80. Tucker S, Bowen WD, Iverson SJ, Blanchard W, Stenson GB (2009) Sources of variation in diets of harp and hooded seals estimated from quantitative fatty acid signature analysis (QFASA). Mar Ecol Prog Ser 384:287–302

    Article  CAS  Google Scholar 

  81. Votier SC, Bearhop S, MacCormick A, Ratcliffe N, Furness RW (2003) Assessing the diet of great skuas, Catharacta skua, using five different techniques. Polar Biol 26:20–26

    Google Scholar 

  82. Wang SW, Iverson SJ, Springer AM, Hatch SA (2007) Fatty acid signatures of stomach oil and adipose tissue of northern fulmars (Fulmarus glacialis) in Alaska: implications for diet analysis of Procellariform birds. J Comp Physiol B 177:893–903

    Article  CAS  Google Scholar 

  83. Wang SW, Iverson SJ, Springer AM, Hatch SA (2009) Spatial and temporal diet segregation in northern fulmars Fulmarus glacialis breeding in Alaska: insights from fatty acid signatures. Mar Ecol Prog Ser 377:299–307

    Article  CAS  Google Scholar 

  84. Wang SW, Hollmén T, Iverson SJ (2010) Validating quantitative fatty acid signature analysis to estimate diets of spectacled and Steller’s eiders (Somateria fischeri and Polysticta stelleri). J Comp Physiol B 180:125–139

    Article  CAS  Google Scholar 

  85. Wanless S, Harris MP (1986) Time spent at the colony by male and female guillemots Uria aalge and Razorbills Alca torda. Bird Study 33:168–176

    Article  Google Scholar 

  86. Wanless S, Gremillet D, Harris MP (1998) Foraging activity and performance of shags Phalacrocorax aristotelis in relation to environmental characteristics. J Avian Biol 29:49–54

    Article  Google Scholar 

  87. Webster L, Walsham P, Ahmed Y, Richards S, Hay S, Heath M, Moffat C (2006) Development and application of an analytical method for the determination of storage lipids, fatty acids and fatty alcohols in Calanus finmarchicus. J Sep Sci 29:1205–1216

    Article  CAS  Google Scholar 

  88. Weimerskirch H, Chastel O, Cherel Y, Henden JA, Tveraa T (2001) Nest attendance and foraging movements of northern fulmars rearing chicks at Bjornoya Barents Sea. Polar Biol 24:83–88

    Article  Google Scholar 

  89. Weimerskirch H, Le Corre M, Ropert-Coudert Y, Kato A, Marse F (2006) Sex-specific foraging behaviour in a seabird with reversed sexual dimorphism: the red-footed booby. Oecologia 146:681–691

    Article  Google Scholar 

  90. Williams CT, Buck CL (2010) Using fatty acids as dietary tracers in seabird trophic ecology: theory, application and limitations. J Ornithol 151:531–543

    Article  Google Scholar 

  91. Williams CT, Iverson SJ, Buck CL (2009) The effects of diet and caloric restriction on adipose tissue fatty acid signatures of tufted puffin (Fratercula cirrhata) nestlings. J Comp Physiol B 179:711–720

    Article  CAS  Google Scholar 

  92. Wilson LJ, Daunt F, Wanless S (2004) Self-feeding and chick provisioning diet differ in the common guillemot Uria aalge. Ardea 92:97–208

    Google Scholar 

Download references

Acknowledgments

We thank Mark Newell, Mike Harris, Barbara Cheney, Laura Thompson and colleagues who assisted with fieldwork, Kate Griffiths and Stuart Piertney for carrying out DNA sexing, Pamela Walsham for additional laboratory support and three anonymous reviewers for improvements to the manuscript. Permission to work on the Isle of May NNR and Eynhallow was kindly provided by Scottish Natural Heritage and Orkney Islands Council, respectively. Capture and handling of birds was carried out under licence from the British Trust for Ornithology, and blood, feathers and adipose sampling was carried out under licence from The Home Office. Funding for the project was provided by the Natural Environment Research Council and Talisman Energy (UK) Ltd.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ellie Owen.

Additional information

Communicated by S. Garthe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 42 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Owen, E., Daunt, F., Moffat, C. et al. Analysis of fatty acids and fatty alcohols reveals seasonal and sex-specific changes in the diets of seabirds. Mar Biol 160, 987–999 (2013). https://doi.org/10.1007/s00227-012-2152-x

Download citation

Keywords

  • Canonical Variate Analysis
  • Adipose Tissue Sample
  • Giant Petrel
  • Yellow Legged Gull
  • Common Guillemot