Skip to main content

Advertisement

Log in

The physiological and molecular responses of larvae from the reef-building coral Pocillopora damicornis exposed to near-future increases in temperature and pCO2

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Given the threats of greenhouse gas emissions and a changing climate to marine ecosystems, there is an urgent need to better understand the response of not only adult corals, which are particularly sensitive to environmental changes, but also their larvae, whose mechanisms of acclimation to both temperature increases and ocean acidification are not well understood. Brooded larvae from the reef coral Pocillopora damicornis collected from Nanwan Bay, Southern Taiwan, were exposed to ambient or elevated temperature (25 or 29 °C) and pCO2 (415 or 635 μatm) in a factorial experiment for 9 days, and a variety of physiological and molecular parameters were measured. Respiration and rubisco protein expression decreased in larvae exposed to elevated temperature, while those incubated at high pCO2 were larger in size. Collectively, these findings highlight the complex metabolic and molecular responses of this life history stage and the need to integrate our understanding across multiple levels of biological organization. Our results also suggest that for this pocilloporid larval life stage, the impacts of elevated temperature are likely a greater threat under near-future predictions for climate change than ocean acidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ainsworth TD, Hoegh-Guldberg O, Heron SF, Skirving WJ, Leggat W (2008) Early cellular changes are indicators of pre-bleaching thermal stress in the coral host. J Exp Mar Biol Ecol 364:63–71. doi:10.1016/j.jembe.2008.06.032

    Article  Google Scholar 

  • Albright R (2011) Reviewing the effects of ocean acidification on sexual reproduction and early life history stages of reef-building corals. J Mar Biol Article ID 473615, pp 14. doi:10.1155/2011/473615

  • Albright R, Langdon C (2011) Ocean acidification impacts multiple early life history processes of the Caribbean coral Porites astreoides. Glob Change Biol 17:2478–2487. doi:10.1111/j.1365-2486.2011.02404.x

    Article  Google Scholar 

  • Albright R, Mason B, Miller M, Langdon C (2010) Ocean acidification compromises recruitment success of the threatened Caribbean coral Acropora palmata. Proc Natl Acad Sci USA 107:20400–20404. doi:10.1073/pnas.1007273107

    Article  CAS  Google Scholar 

  • Anlauf H, D’Croz L, O’Dea A (2011) A corrosive concoction: the combined effects of ocean warming and acidification on the early growth of a stony coral are multiplicative. J Exp Mar Biol Ecol 397:13–20. doi:10.1016/j.jembe.2010.11.009

    Article  Google Scholar 

  • Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci USA 105:17442–17446. doi:10.1073/pnas.0804478105

    Article  CAS  Google Scholar 

  • Aranda M, Banaszak AT, Bayer T, Luyten JR, Medina M, Voolstra CR (2011) Differential sensitivity of coral larvae to natural levels of ultraviolet radiation during the onset of larval competence. Mol Ecol 20:2955–2972. doi:10.1111/j.1365-294X.2011.05153.x

    Article  CAS  Google Scholar 

  • Bassim KM, Sammarco PW (2003) Effects of temperature and ammonium on larval development and survivorship in a scleractinian coral (Diploria strigosa). Mar Biol 142:241–252. doi:10.1007/s00227-002-0953-z

    CAS  Google Scholar 

  • Brown BE, Dunne RP, Goodson S, Douglas AE (2002) Experience shapes the susceptibility of a reef coral to bleaching. Coral Reefs 12:119–126

    Google Scholar 

  • Byrne M (2011a) Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanogr Mar Biol Ann Rev 49:1–42

    Google Scholar 

  • Byrne M (2011b) Global change ecotoxicology: identification of early life history bottlenecks in marine invertebrates, variable species responses and variable experimental approaches. Mar Environ Res 76:3–15. doi:10.1016/j.marenvres.2011.10.004

    Article  Google Scholar 

  • Chauvin A, Denis V, Cuet P (2011) Is the response of coral calcification to seawater acidification related to nutrient loading? Coral Reefs 30:911–923. doi:10.1007/s00338-011-0786-7

    Article  Google Scholar 

  • Coles SL, Brown BE (2003) Coral bleaching-capacity for acclimatization and adaptation. Adv Mar Biol 46:183–223

    Article  CAS  Google Scholar 

  • Coles SL, Jokiel PL (1977) Effects of temperature on photosynthesis and respiration in hermatypic corals. Mar Biol 43:209–216

    Article  CAS  Google Scholar 

  • Crawley A, Kline D, Dunn S, Anthony K, Dove S (2010) The effect of ocean acidification on symbiont photorespiration and productivity in Acropora formosa. Glob Change Biol 16:851–863. doi:10.1111/j.1365-2486.2009.01943.x

    Article  Google Scholar 

  • Dickson A, Millero F (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res 34:1733–1743

    Article  CAS  Google Scholar 

  • Dickson A, Sabine C, Christian J (2007) Guide to best practices for ocean CO2 measurement. In: Dickson A, Sabine C, Christian J (eds) PICES Special Publication 3

  • Doney SC, Balch WM, Fabry VJ, Feely RA (2009a) Ocean acidification: a critical emerging problem for the ocean sciences. Oceanography 22:16–25

    Article  Google Scholar 

  • Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009b) Ocean acidification: the other CO2 problem. Ann Rev Mar Sci 1:169–192

    Article  Google Scholar 

  • Donner SD (2009) Coping with commitment: projected thermal stress on coral reefs under different future scenarios. PLoS One 4(6):e5712. doi:10.1371/journal.pone.0005712

    Article  Google Scholar 

  • Downs CA, Mueller E, Phillips S, Fauth JE, Woodley CM (2000) A molecular biomarker system for assessing the health of coral (Montastraea faveolata) during heat stress. Mar Biotechnol 2:533–544. doi:10.1007/s101260000038

    Article  CAS  Google Scholar 

  • Drake BG, Gonzalez-Meler MA, Long SP (1997) More efficient plants: a consequence of rising atmospheric CO2? Annu Rev Plant Physiol Plant Mol Biol 48:609–639. doi:10.1146/annurev.arplant.48.1.609

    Article  CAS  Google Scholar 

  • Dupont S, Dorey N, Thorndyke M (2010a) What meta-analysis can tell us about vulnerability of marine biodiversity to ocean acidification? Estuar Coast Shelf Sci 89:182–185. doi:10.1016/j.ecss.2010.06.013

    Article  Google Scholar 

  • Dupont S, Lundve B, Thorndyke M (2010b) Near future ocean acidification increases growth rate of the lecithotrophic larvae and juveniles of the sea star Crossaster papposus. J Exp Zool (Mol Dev Evol) 314B:382–389

    Article  Google Scholar 

  • Dupont S, Moya A, Bailly X (2012) Stable photosymbiotic relationship under CO2-induced acidification in the acoel worm Symsagittifera roscoffensis. PLoS One 7(1):e29568. doi:10.1371/journal.pone.0029568

    Article  CAS  Google Scholar 

  • Edmunds PJ (2011) Zooplanktivory ameliorates the effects of ocean acidification on the reef coral Porites spp. Limnol Oceanogr 56:2402–2410. doi:10.4319/lo.2011.56.6.2402

    Article  CAS  Google Scholar 

  • Edmunds PJ, Gates RD, Gleason DF (2001) The biology of larvae from the reef coral Porites astreoides, and their response to temperature disturbances. Mar Biol 139:981–989. doi:10.1007/s002270100634

    Article  Google Scholar 

  • Edmunds PJ, Cumbo V, Fan TY (2011) Effects of temperature on the respiration of brooded larvae from tropical reef corals. J Exp Biol 214:2783–2790. doi:10.1242/jeb.055343

    Article  Google Scholar 

  • Edmunds PJ, Brown D, Moriarty V (2012) Interactive effects of ocean acidification and temperature on two scleractinian corals from Moorea, French Polynesia. Glob Change Biol 18:2173–2183. doi:10.1111/j.1365-2486.2012.02695.x

    Article  Google Scholar 

  • Erez J, Reynaud S, Silverman J, Schneider K, Allemand D (2011) Coral calcification under ocean acidification and global change. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Berlin, pp 151–176

    Chapter  Google Scholar 

  • Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas M, Lough JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Change 1:165–169. doi:10.1038/nclimate1122

    Article  CAS  Google Scholar 

  • Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432. doi:10.1093/icesjms/fsn048

    Article  CAS  Google Scholar 

  • Falkowski PG, Raven JA (2007) Aquatic photosynthesis, 2nd edn. Princeton University Press, Princeton pp 484

    Google Scholar 

  • Fan TY, Li JJ, Ie SX, Fang LS (2002) Lunar periodicity of larval release by pocilloporid corals in southern Taiwan. Zool Stud 41(3):288–294

    Google Scholar 

  • Fangue NA, O’Donnell MJ, Sewell MA, Matson PG, MacPherson AC, Hofmann GE (2010) A laboratory-based, experimental system for the study of ocean acidification effects on marine invertebrate larvae. Limnol Oceanogr Methods 8:441–452. doi:10:4319/lom.2010.8.441

    Article  CAS  Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    Article  CAS  Google Scholar 

  • Fitt WK, Brown BE, Warner ME, Dunne RP (2001) Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20:51–65. doi:10.1007/s003380100146

    Article  Google Scholar 

  • Ganot P, Moya A, Magnone V, Allemand D, Furla P, Sabourault C (2011) Adaptations to endosymbiosis in a cnidarian-dinoflagellate association: differential gene expression and specific gene duplications. PLoS Genet 7(7):e1002187. doi:10.1371/journal.pgen.1002187

    Article  CAS  Google Scholar 

  • Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189. doi:10.1038/nature04565

    Article  CAS  Google Scholar 

  • Hashimoto K, Shibuno T, Murayama-Kayano E, Tanaka H, Kayano T (2004) Isolation and characterization of stress-responsive genes from the scleractinian coral Pocillopora damicornis. Coral Reefs 23:485–491. doi:10.1007/s00338-004-0410-1

    Google Scholar 

  • Hochachka PW, Somero GN (2002) Biochemical adaptation. Oxford University Press, Oxford pp 466

    Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742. doi:10.1126/science.1152509

    Article  CAS  Google Scholar 

  • Hofmann GE, Todgham AE (2010) Living in the now: physiological mechanisms to tolerate a rapidly changing environment. Annu Rev Physiol 72:127–145. doi:10.1146/annurev-physiol-021909-135900

    Article  CAS  Google Scholar 

  • Hofmann GE, Buckley BA, Place SP, Zippay ML (2002) Molecular chaperones in ecothermic marine animals: biochemical function and gene expression. Integr Comp Biol 42:808–814

    Article  CAS  Google Scholar 

  • Hofmann GE, Barry JP, Edmunds PJ, Gates RD, Hutchins DA, Klinger T, Sewell MA (2010) The effect of ocean acidification on calcifying marine organisms in marine ecosystems: an organism to ecosystem perspective. Annu Rev Ecol Evol Syst 41:127–147. doi:10.1146/annurev.ecolsys.110308.120227

    Article  Google Scholar 

  • Isomura N, Nishihira M (2001) Size variation of planulae and its effect on the lifetime of planulae in three pocilloporid corals. Coral Reefs 20:309–315. doi:10.1007/s003380100180

    Article  Google Scholar 

  • Jones RJ, Ward S, Amri AY, Hoegh-Guldberg O (2000) Changes in quantum efficiency of photosystem II of symbiotic dinoflagellates of corals after heat stress and of bleached corals sampled after the 1998 Great Barrier Reef bleaching event. Mar Fresh Res 51:63–71. doi:10.1071/MF99100

    Article  Google Scholar 

  • Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13:1419–1434. doi:10.1111/j.1461-0248.2010.01518.x

    Article  Google Scholar 

  • Kurihara H (2008) Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar Ecol Prog Ser 373:275–284. doi:10.3354/meps07802

    Article  CAS  Google Scholar 

  • Langdon C, Atkinson MJ (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys Res 110:C09S07. doi:10.1029/2004JC002576

  • Leggat W, Badger MR, Yellowlees D (1999) Evidence for an inorganic carbon-concentrating mechanism n the symbiotic dinoflagellate Symbiodinium sp. Plant Physiol 121:1247–1255

    Article  CAS  Google Scholar 

  • Leggat W, Whitney S, Yellowlees D (2004) Is coral bleaching due to the instability of the zooxanthellae dark reactions? Symbiosis 37:137–153

    CAS  Google Scholar 

  • Leggat W, Seneca F, Wasmund K, Ukani L, Yellowlees D, Ainsworth TD (2011) Differential responses of the coral host and their algal symbiont to thermal stress. PLoS One 6(10):e26687. doi:10.1371/journal.pone.0026687

    Article  CAS  Google Scholar 

  • Lesser MP (1997) Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs 16:187–192

    Article  Google Scholar 

  • Lesser MP (2011) Coral bleaching: causes and mechanisms. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Berlin, pp 405–420

  • Levy O, Kaniewska P, Alon S, Karako-Lampert S, Bay LK, Reef R, Rodriguez-Lanetty M, Miller DJ, Hoegh-Guldberg O (2011) Complex diel cycles of gene expression in coral-algal symbiosis. Science 331:175. doi:10.1126/science.1196419

    Article  CAS  Google Scholar 

  • Mayfield AB, Hirst MB, Gates RD (2009) Gene expression normalization in a dual-compartment system: a real-time quantitative polymerase chain reaction protocol for symbiotic anthozoans. Mol Ecol Res 9:462–470. doi:10.1111/j.1755-0998.2008.02349.x

    Article  Google Scholar 

  • Mayfield AB, Hsiao YY, Fan TY, Chen CS, Gates RD (2010) Evaluating the temporal stability of stress-activated protein kinase and cytoskeleton gene expression in the Pacific corals Pocillopora damicornis and Seriatopora hystrix. J Exp Mar Biol Ecol 395:215–222. doi:10.1016/j.jembe.2010.09.007

    Article  Google Scholar 

  • Mayfield AB, Wang LH, Tang PC, Fan TY, Hsiao YY, Tsai CL, Chen CS (2011) Assessing the impacts of experimentally elevated temperature on the biological composition and molecular chaperone gene expression of a reef coral. PLoS One 6(10):e26529. doi:10.1371/journal.pone.0026529

    Article  CAS  Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

    Article  CAS  Google Scholar 

  • Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque J-F, Matsumoto K, Montzka SA, Raper SCB, Riahi K, Thomson A, Velders GJM, van Vuuren DPP (2011) The RPC greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109:213–241. doi:10.1007/s10584-011-0156-z

    Article  CAS  Google Scholar 

  • Melzner F, Gutowska MA, Langenbuch M, Dupont S, Lucassen M, Thorndyke MC, Bleich M, Pörtner H-O (2009) Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6:2313–2331

    Article  CAS  Google Scholar 

  • Meyer E, Aglyamova GV, Matz MV (2011) Profiling gene expression responses of coral larvae (Acropora millepora) to elevated temperature and settlement inducers using a novel RNA-Seq procedure. Mol Ecol 20:3599–3616. doi:10.1111/j.1365-294X.2011.05205.x

    CAS  Google Scholar 

  • Moore BD, Cheng S-H, Rice J, Seeman JR (1998) Sucrose cycling, Rubisco expression, and prediction of photosynthetic acclimation to elevated atmospheric CO2. Plant Cell Environ 21:905–915

    Article  CAS  Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi:10.1038/nature08823

    Article  CAS  Google Scholar 

  • Munday PL, Dixson DL, Donelson JM, Jones GP, Pratchett MS, Devitsina GV, Døving KB (2009) Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc Natl Acad Sci USA 106:1848–1852. doi:10.1073/pnas.0809996106

    Article  CAS  Google Scholar 

  • Muscatine L, McCloskey LR, Marian RE (1981) Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol Oceanogr 26:601–611

    Article  CAS  Google Scholar 

  • Muscatine L, Falkowski PG, Porter JW, Dubinsky Z (1984) Fate of photosynthetic fixed carbon in light- and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Proc R Soc Lond B 222:181–202

    Article  CAS  Google Scholar 

  • Muscatine L, Porter JW, Kaplan IR (1989) Resource partitioning by reef corals as determined from stable isotope composition. Mar Biol 100:185–193

    Article  Google Scholar 

  • Nakamura M, Morita M, Kurihara H, Mitarai S (2011a) Expression of hsp70, hsp90 and hsf1 in the reef coral Acropora digitifera under prospective acidified conditions over the next several decades. Biol Open BIO2011036. doi:10.1242/bio.2011036

  • Nakamura M, Ohki A, Suzuki A, Sakai K (2011b) Coral larvae under ocean acidification: survival, metabolism, and metamorphosis. PLoS One 6:e14521. doi:10.1371/journal.pone.0014521

    Article  CAS  Google Scholar 

  • Negri AP, Marshall PA, Heyward AJ (2007) Differing effects of thermal stress on coral fertilization and early embryogenesis in four Indo Pacific species. Coral Reefs 26:759–763. doi:10.1007/s00338-007-0258-2

    Article  Google Scholar 

  • Pandolfi JM, Jackson JBC, Baron N, Bradbury RH, Guzman HM, Hughes TP, Kappel CV, Micheli F, Possingham HP, Sala E (2005) Are US reefs on the slippery slope to slime? Science 307:1725–1726. doi:10.1126/science.1104258

    Article  CAS  Google Scholar 

  • Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333:418–422. doi:10.1126/science.1204794

    Article  CAS  Google Scholar 

  • Parker LM, Ross PM, O’Connor WA, Borysko L, Raftos DA, Pörtner H-O (2012) Adult exposure influences offspring response to ocean acidification in oysters. Glob Change Biol 18:82–92. doi:10.1111/j.1365-2486.2011.02520.x

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669. doi:10.1146/annurev.ecolsys.37.091305.110100

    Article  Google Scholar 

  • Parry MAJ, Keys AJ, Madgwick PJ, Carmo-Silva AE, Andralojc PJ (2008) Rubisco regulation: a role for inhibitors. J Exp Bot 59:1569–1580. doi:10.1093/jxb/ern084

    Article  CAS  Google Scholar 

  • Pierrot D, Lewis E, Wallace DWR (2006) MS Excel program developed for CO2 system calculations. ORNL/CDIAC-105a

  • Pörtner H-O (2008) Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar Ecol Prog Ser 373:203–217. doi:10.3354/meps07768

    Article  Google Scholar 

  • Pörtner H-O, Farrell AP (2008) Physiology and climate change. Science 332:690–691. doi:10.1126/science.1163156

    Article  Google Scholar 

  • Pörtner H-O, Bennett AF, Bozinovic F, Clarke A, Lardies MA, Lucassen M, Pelster B, Schiemer F, Stillman JH (2006) Trade-offs in thermal adaptation: the need for molecular to ecological integration. Phys Biochem Zool 79:295–313. doi:10.1086/499986

    Article  Google Scholar 

  • Putnam HM, Edmunds PJ, Fan TY (2008) Effect of temperature on the settlement choice and photophysiology of larvae from the reef coral Stylophora pistillata. Biol Bull 215:135–142

    Article  Google Scholar 

  • Putnam HM, Edmunds PJ, Fan TY (2010) Effect of a fluctuating thermal regime on adult and larval reef corals. Invertebr Biol 129:199–209. doi:10.1111/j.17447410.2010.00199.x

    Article  Google Scholar 

  • Randall CJ, Szmant AM (2009) Elevated temperature reduces survivorship and settlement of the larvae of the Caribbean scleractinian coral, Favia fragum (Esper). Coral Reefs 28:537–545. doi:10.1007/s00338-009-0482-z

    Article  Google Scholar 

  • Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5 A scenario of comparatively high greenhouse gas emissions. Clim Change 109:33–57. doi:10.1007/s10584-011-0149-y

    Article  CAS  Google Scholar 

  • Riebesell U, Fabry VJ, Hansson L, Gattuso J-P (eds) (2010) Guide to best practices for ocean acidification research and data reporting. European Commission, Brussels. doi:10.2777/58454

    Google Scholar 

  • Rodriguez-Lanetty M, Harii S, Hoegh-Guldberg O (2009) Early molecular responses of coral larvae to hyperthermal stress. Mol Ecol 18:5101–5114. doi:10.1111/j.1365-294X.2009.04419.x

    Article  CAS  Google Scholar 

  • Stumpp A, Dupont ST, Thorndyke MC, Melzner F (2011a) CO2 induced seawater acidification impacts sea urchin larval development II: gene expression patterns in pluteus larvae. Comp Biochem Physiol A 160:320–330. doi:10.1016/j.cbpa.2011.06.023

    Article  CAS  Google Scholar 

  • Stumpp A, Wren J, Melzner F, Thorndyke MC, Dupont ST (2011b) CO2 induced seawater acidification impacts sea urchin larval development I: elevated metabolic rates decrease scope for growth and induce developmental delay. Comp Biochem Physiol A 160:331–340. doi:10.1016/j.cbpa.2011.06.022

    Article  CAS  Google Scholar 

  • Sunday JM, Crim RN, Harley CDG, Hart MW (2011) Quantifying rates of evolutionary adaptation in response to ocean acidification. PLoS One 6(8):e22881. doi:10.1371/journal.pone.0022881

    Article  CAS  Google Scholar 

  • Szmant AM, Gassman NJ (1990) The effects of prolonged “bleaching” on the tissue biomass and reproduction of the reef coral Montastrea annularis. Coral Reefs 8:217–224

    Article  Google Scholar 

  • Talmage SC, Gobler CJ (2010) Effects of past, present and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish. Proc Natl Acad Sci USA 107:17246–17251. doi:10.1073/pnas.0913804107

    Article  CAS  Google Scholar 

  • Talmage SC, Gobler CJ (2011) Effects of elevated temperature and carbon dioxide on the growth and survival of larvae and juveniles of three species of Northwest Atlantic bivalves. PLoS One 6(10):e26941. doi:10.1371/journal.pone.0026941

    Article  CAS  Google Scholar 

  • van Vuuren DP, Meinshausen M, Plattner GK, Joos F, Strassmann KM, Smith SJ, Wigley TML, Raper SCB, Riahi K, de la Chesnaye F, den Elzen MGJ, Fujino J, Jiang K, Nakicenovic N, Paltsev S, Reilly JM (2008) Temperature increase of 21st century mitigation scenarios. Proc Natl Acad Sci USA 105:15258–15262. doi:10.1073/pnas.0711129105

    Article  Google Scholar 

  • van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F, Masiu T, Meinshausen M, Nakicenovi N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Change 109:5–31. doi:10.1007/s10584-011-0148-z

    Article  Google Scholar 

  • Venn AA, Loram JE, Douglas AE (2008) Photosynthetic symbioses in animals. J Exp Bot 59:1069–1080. doi:10.1093/jxb/erm328

    Article  CAS  Google Scholar 

  • Veron JEN (2011) Ocean acidification and coral reefs: an emerging big picture. Diversity 3:262–274. doi:10.3390/d3020262

    Article  CAS  Google Scholar 

  • Yakovleva IM, Baird AH, Yamamoto HH, Bhagooli R, Nonaka M, Hidaka M (2009) Algal symbionts increase oxidative damage and death in coral larvae at high temperatures. Mar Ecol Prog Ser 378:105–112. doi:10.3354/meps07857

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the staff and students of the NMMBA and technical assistance from Okay Chan, Yao-Hung Chen, Yi-Yuong Hsiao, Peter Edmunds, Vivian Cumbo, and Aaron Dufault. We thank Gretchen Hofmann and her program for seawater chemistry protocols (work supported by the United States National Science Foundation [NSF] awards OCE-1040960 and ANT-0944201 to GEH). We would also like to thank three anonymous reviewers for their comments, which have greatly improved the manuscript. This study was supported by grants from NSF (BIO-OCE 08-44785 to PJE and OCE-0752604 to RDG), and funding from the International Society for Reef Studies, the Ocean Conservancy, and the American Fisheries Society to HMP. ABM was funded by an NSF international postdoctoral research fellowship (OISE-0852960). In addition, this research was developed under STAR Fellowship Assistance Agreement no. FP917199 awarded by the U.S. Environmental Protection Agency (EPA). This manuscript has not been formally reviewed by the EPA, and the views expressed are solely those of the authors. The EPA does not endorse any products or commercial services mentioned in this manuscript. This manuscript is HIMB contribution number 1531 and SOEST contribution number 8795.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Putnam.

Additional information

Communicated by H.-O. Pörtner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 85 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Putnam, H.M., Mayfield, A.B., Fan, T.Y. et al. The physiological and molecular responses of larvae from the reef-building coral Pocillopora damicornis exposed to near-future increases in temperature and pCO2 . Mar Biol 160, 2157–2173 (2013). https://doi.org/10.1007/s00227-012-2129-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-2129-9

Keywords

Navigation