Marine Biology

, Volume 160, Issue 1, pp 195–209 | Cite as

Population trends of Steller sea lions (Eumetopias jubatus) with respect to remote sensing measures of chlorophyll-a in critical habitat

  • Michelle E. Lander
  • Lowell W. Fritz
  • Devin S. Johnson
  • Miles G. Logsdon
Original Paper

Abstract

The recovery plan for Steller sea lions (SSL; Eumetopias jubatus) suggests critical habitat should be enhanced to incorporate the spatio-temporal variation in dynamic oceanographic features that influence the prey and survival of SSL. It is necessary, therefore, to determine which features affect SSL. Demographics for sub-regions of the endangered, western stock of SSL were examined with respect to corresponding average, maximum, and variance of chlorophyll-a data (SeaWIFS), a proxy for primary productivity. Overall, SSL trends (2000–2008) and pup productivity (1999–2009) were related to maximum values of chl-a in critical habitat. Additionally, conditions in critical habitat appeared worse in areas of decline (i.e., dispersed patterns of chl-a hotspots and greater distances from SSL sites to productive areas). Although there may be a low feasibility of mitigating the effects of dynamic features on the recovery of SSL, the interactive effects of primary productivity and other stressors should be investigated for safeguarding their prey.

References

  1. Bakun A (2010) Linking climate to population variability in marine ecosystems characterized by non-simple dynamics: conceptual templates and schematic constructs. J Mar Syst 79:361–373CrossRefGoogle Scholar
  2. Bishop MA, Reynolds BF, Powers SP (2010) An in situ, individual-based approach to quantify connectivity of marine fish: ontogenetic movements and residency of Lingcod. PLoS ONE 5(12):e14267CrossRefGoogle Scholar
  3. Boyd IL (1991) Environmental and physiological factors controlling the reproductive cycles of pinnipeds. Can J Zool 69:1135–1148CrossRefGoogle Scholar
  4. Braham HW, Everitt RD, Rugh DG (1980) Northern sea lion decline in the eastern Aleutian Islands. J Wildl Manage 44:25–33CrossRefGoogle Scholar
  5. Brander KM (2007) Global fish production and climate change. PNAS 104:19709–19714CrossRefGoogle Scholar
  6. Brandon EAA (2000) Maternal investment in Steller sea lions in Alaska. Dissertation, Texas A&M University, College StationGoogle Scholar
  7. Brown CJ, Fulton EA, Hobday AJ, Matear RJ, Possingham HP, Bulman C, Christensen V, Forrest RE, Gehrke PC, Gribble NA, Griffiths SP, Lozano-Montes H, Martin JM, Metcalf S, Oket TA, Watson R, Richardson AJ (2010) Effects of climate-driven primary production change on marine food webs: implications for fisheries and conservation. Glob Change Biol 16:1194–1212CrossRefGoogle Scholar
  8. Calkins DG, McAllister DC, Pitcher KW, Pendleton GW (1999) Steller sea lion status and trend in Southeast Alaska: 1979–1997. Mar Mamm Sci 15:462–477CrossRefGoogle Scholar
  9. Dayton PK, Mordida BJ, Bacon F (1994) Polar marine communities. Am Zool 34:90–99Google Scholar
  10. DeMaster DP, Trites AW, Clapham P, Mizroch S, Wade P, Small RJ, Ver Hoef J (2006) The sequential megafaunal collapse hypothesis: testing with existing data. Prog Oceanogr 68:329–342CrossRefGoogle Scholar
  11. Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074CrossRefGoogle Scholar
  12. Ferrero RC, Fritz LW (2002) Steller sea lion research coordination: a brief history and summary of recent progress. U. S. Department of Commerce, NOAA Technical Memorandum NMFS-AFSC-129Google Scholar
  13. Forman RT, Godron M (1986) Landscape ecology. Wiley Publishers, New YorkGoogle Scholar
  14. Frank KT, Petrie B, Shackell NL, Choi JS (2006) Reconciling differences in trophic control in mid-latitude marine ecosystems. Ecol Lett 9:1096–1105CrossRefGoogle Scholar
  15. Frederiksen M, Edwards M, Richardson AJ, Halliday NC, Wanless S (2006) From plankton to top predators: bottom-up control of a marine food web across four trophic levels. J Anim Ecol 75:1259–1268CrossRefGoogle Scholar
  16. Fritz L, Hinckley S (2005) A critical review of the regime shift—“junk food”—nutritional stress hypothesis for the decline of the western stock of Steller sea lion. Mar Mamm Sci 21:476–518CrossRefGoogle Scholar
  17. Fritz LW, Stinchcomb C (2005) Aerial, ship, and land-based surveys of Steller sea lions (Eumetopias jubatus) in the western stock in Alaska, June and July 2003 and 2004. U. S. Department of Commerce, NOAA Technical Memorandum NMFS-AFSC-153Google Scholar
  18. Fritz L, Lynn M, Kunisch E, Sweeney K (2008) Aerial, ship, and land-based surveys of Steller sea lions (Eumetopias jubatus) in Alaska, June and July 2005 and 2007. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-AFSC-183Google Scholar
  19. Gardner RH, O’Neill RV, Turner MG (1993) Ecological implications of landscape fragmentation. In: Picket STA, McDonnell MG (eds) Humans as components of ecosystems: subtle human effects and ecology of populated areas. Springer, New YorkGoogle Scholar
  20. Grémillet D, Lewis S, Drapeau L, van Der Lingen CD, Huggett JA, Coetzee JC, Verheye HM, Daunt F, Wanless S, Ryan PG (2008) Spatial match-mismatch in the Benguela upwelling zone: should we expect chlorophyll and sea-surface temperature to predict marine predator distributions? J Appl Ecol 45:610–621CrossRefGoogle Scholar
  21. Guénette S, Heymans SJJ, Christensen V, Trites AW (2006) Ecosystem models show combined effects of fishing, predation, competition, and ocean productivity on Steller sea lions (Eumetopias jubatus) in Alaska. Can J Fish Aquat Sci 63:2495–2517CrossRefGoogle Scholar
  22. Harwood J (2001) Marine mammals and their environment in the twenty-first century. J Mamm 82:630–640CrossRefGoogle Scholar
  23. Hennen D (2006) Associations between the Alaskan Steller sea lion decline and commercial fisheries. Ecol Appl 16:704–717CrossRefGoogle Scholar
  24. Himes Boor GK, Small RJ (2012) Steller sea lion spatial-use patterns derived from a Bayesian model of opportunistic observations. Mar Mamm Sci. doi:10.1111/j.1748-7692.2011.00541.x Google Scholar
  25. Hirons AC, Schell DM, Finney BP (2001) Temporal records of delta 13C and delta 15N in North Pacific pinnipeds: inferences regarding environmental change and diet. Oecologia 129:591–601Google Scholar
  26. Hollowed AB, Wilson CD, Stabeno PJ, Salo SA (2007) Effects of ocean conditions on the cross-shelf distribution of walleye Pollock (Theragra chalcogramma) and capelin (Mallotus villosus). Fish Oceanogr 16:142–154CrossRefGoogle Scholar
  27. Holmes EE, Fritz LW, York AE, Sweeney K (2007) Age-structure modeling reveals long-term decline in the natality of western Steller sea lions. Ecol Appl 17:2214–2232CrossRefGoogle Scholar
  28. Hooker SK, Cañadas A, Hyrenbach KD, Corrigan C, Polovina JJ, Reeves RR (2011) Making protected area networks effective for marine top predators. Endanger Species Res 13:203–218CrossRefGoogle Scholar
  29. Hyrenbach KD, Forney KA, Dayton PK (2000) Viewpoint: marine protected areas and ocean basin management. Aquat Conserv Mar Freshw Ecosyst 10:437–458CrossRefGoogle Scholar
  30. Iida T, Saitoh S (2007) Temporal and spatial variability of chlorophyll concentrations in the Bering Sea using empirical orthogonal function (EOF) analysis of remote sensing data. Deep-Sea Res II 54:2657–2671CrossRefGoogle Scholar
  31. Ims R (1990) The ecology and evolution of reproductive synchrony. Trends Ecol Evol 5:135–140CrossRefGoogle Scholar
  32. IPCC (Intergovernmental Panel on Climate Change) (2007) Climate change 2007: the physical science basis. Intergovernmental Panel on Climate Change Secretariat, GenevaGoogle Scholar
  33. Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate-change experiments: events, not trends. Front Ecol Environ 5:365–374CrossRefGoogle Scholar
  34. Ladd C, Hunt GL, Mordy CW, Salo SA, Stabeno PJ (2005a) Marine environment of the eastern and central Aleutian Islands. Fish Oceanogr 14(Suppl 1):22–38CrossRefGoogle Scholar
  35. Ladd C, Stabeno PJ, Cokelet ED (2005b) A note on cross-shelf exchange in the northern Gulf of Alaska. Deep-Sea Res II 52:667–679CrossRefGoogle Scholar
  36. Laidre K, Heide-Jørgensen MP, Nyeland J, Mosbech A, Boertmann D (2008) Latitudinal gradients in sea ice and primary production determine Arctic seabird colony size in Greenland. Proc R Soc B 275:2695–2702. doi:10.1098/rspb.2008.0874 CrossRefGoogle Scholar
  37. Lander ME, Loughlin TR, Logsdon MG, VanBlaricom GR, Fadely BS, Fritz LW (2009) Regional differences in the spatial and temporal heterogeneity of oceanographic habitat used by Steller sea lions. Ecol Appl 19:1645–1659CrossRefGoogle Scholar
  38. Lander ME, Johnson DS, Sterling JT, Gelatt TS, Fadely BS (2011) Diving behaviors and movements of juvenile Steller sea lions (Eumetopias jubatus) captured in the central Aleutian Islands, April 2005. U. S. Department of Commerce, NOAA Technical Memorandum NMFS-AFSC-218Google Scholar
  39. Logerwell EA, Duffy-Anderson J, Wilson M, Mckelvey D (2010) The influence of pelagic habitat selection and interspecific competition on productivity of juvenile walleye pollock (Theragra chalcogramma) and capelin (Mallotus villosus) in the Gulf of Alaska. Fish Oceanogr 19:262–278CrossRefGoogle Scholar
  40. Loughlin TR (1998) The Steller sea lion: a declining species. Biosph Conserv 1:91–98Google Scholar
  41. Loughlin TR, York AE (2000) An accounting of the sources of Steller sea lion, Eumetopias jubatus, mortality. Mar Fish Rev 62:40–45Google Scholar
  42. Lowe S, Fritz LW (1997) Atka Mackerel. In: Stock assessment and fishery evaluation report for the groundfish resources in the Bering Sea/Aleutian Islands region as projected for 1998. North Pacific Fishery Management Council. 605 W. 4th Ave., Suite 306, Anchorage, AKGoogle Scholar
  43. Lowe S, Van Doornik D, Winans G (1998) Geographic variation in genetic growth patterns of Atka mackerel, Pleurogrammus monopterygius (Hexagrammidae), in the Aleutian archipelago. U.S. Nat Mar Fish Serv Fish Bull 96:502–515Google Scholar
  44. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079CrossRefGoogle Scholar
  45. Mantzouni I, MacKenzie BR (2010) Productivity responses of a widespread marine piscivore, Gadus morhua, to oceanic thermal extremes and trends. Proc Royal Soc B 277:1867–1874CrossRefGoogle Scholar
  46. McDermott SF, Fritz LW, Haist V (2005) Estimating movement and abundance of Atka mackerel (Pleurogrammus monopterygius) with tag-release-recapture data. Fish Oceanogr 14:113–130CrossRefGoogle Scholar
  47. Merrick RL, Loughlin TR (1997) Foraging behavior of adult female and young-of-the-year Steller sea lions in Alaskan waters. Can J Zool 75:776–786CrossRefGoogle Scholar
  48. Monticelli D, Ramos JA, Quartly GD (2007) Effects of annual changes in primary productivity and ocean indices on breeding performance of tropical roseate terns in the western Indian Ocean. Mar Ecol Prog Ser 351:273–286CrossRefGoogle Scholar
  49. Mordy CW, Stabeno PJ, Ladd C, Zeeman S, Wisegarver DP, Salo SA, Hunt GL (2005) Nutrients and primary production along the eastern Aleutian Island Archipelago. Fish Oceanogr 14:55–76CrossRefGoogle Scholar
  50. National Marine Fisheries Service (1992) Recovery plan for the Steller Sea Lion (Eumetopias jubatus). Prepared by the Steller Sea Lion Recovery Team for the National Marine Fisheries Service, Silver SpringGoogle Scholar
  51. National Marine Fisheries Service (2008) Recovery plan for the Steller sea lion (Eumetopias jubatus). Revision. National Marine Fisheries Service, Silver SpringGoogle Scholar
  52. National Marine Fisheries Service (2010) Bering Sea and Aleutian Islands (BSAI) and Gulf of Alaska (GOA) Groundfish Fisheries Section 7 Consultation—Draft Biological Opinion. National Marine Fisheries Service, Alaska RegionGoogle Scholar
  53. Nesse H (2009) Correlates of the decline of the Steller sea lion in the North Pacific. Master thesis, University of Washington, SeattleGoogle Scholar
  54. Newsome SD, Etnier MA, Kurle CM, Waldbauer JR, Chamberlain CP, Koch PL (2007) Historic decline in the primary productivity in western Gulf of Alaska and eastern Bering Sea: isotopic analysis of northern fur seal teeth. Mar Ecol Prog Ser 332:211–224CrossRefGoogle Scholar
  55. Niebauer HJ (1998) Variability in the Bering Sea ice cover as affected by a regime shift in the North Pacific in the period 1947–1996. J Geophys Res 103:27, 717–727, 737Google Scholar
  56. O’Neill RV, Milne BT, Turner MG, Gardner R (1988) Resource utilization scales and landscape pattern. Landscape Ecol 2:63–69CrossRefGoogle Scholar
  57. Piatt JF, Wetzel J, Bell K, DeGange AR, Balogh GR, Drew GS, Geernaert T, Ladd C, Byrd GV (2006) Predictable hotspots and foraging habitat of the endangered short-tailed albatross (Phoebastria albatrus) in the North Pacific: implications for conservation. Deep-Sea Res II 53:387–398CrossRefGoogle Scholar
  58. R Development Core Team (2006) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org
  59. Rand KM, Beauchamp DA, Lowe SA (2010) Longitudinal growth differences and the influence of diet quality on Atka mackerel of the Aleutian Islands, Alaska: using a bioenergetics model to explore underlying mechanisms. Mar Coast fish 2:362–374CrossRefGoogle Scholar
  60. Rehberg MJ, Andrews RD, Swain UG, Calkins DG (2009) Foraging behavior of adult female Steller sea lions during the breeding season in Southeast Alaska. Mar Mamm Sci 25:588–604CrossRefGoogle Scholar
  61. Ruddick KG, Ovidio F, Rijkeboer M (2000) Atmospheric correction of SeaWIFS imagery for turbid coastal and inland waters. Appl Opt 39:897–912CrossRefGoogle Scholar
  62. Sambrotto RN, Mordy C, Zeeman SI, Stabeno PJ, Macklin SA (2008) Physical forcing of nutrient concentrations associated with patterns of Chl a and phytoplankton productivity in the southeastern Bering Sea during summer. Deep-Sea Res II 55:1745–1760CrossRefGoogle Scholar
  63. Schell DM (2000) Declining carrying capacity in the Bering Sea: isotopic evidence from whale baleen. Limnol Oceanogr 45:459–462CrossRefGoogle Scholar
  64. Schell DM, Barnett BA, Vinette KA (1998) Carbon and nitrogen isotope ratios in zooplankton of the Bering, Chukchi and Beaufort seas. Mar Ecol Prog Ser 162:11–23CrossRefGoogle Scholar
  65. Sease JL, Gudmundson CJ (2002) Aerial and ship-based surveys of Steller sea lions (Eumetopias jubatus) from the western stock in Alaska, June and July 2001 and 2002. NOAA Technical Memorandum NMFS-AFSC-100Google Scholar
  66. Sibly RM, Brown JH (2009) Mammal reproductive strategies driven by offspring mortality-size relationships. Am Nat 173:E185–E199CrossRefGoogle Scholar
  67. Simpson JJ (1992) Remote sensing and geographical information systems: their past, present and future use in global marine fisheries. Fish Oceanogr 1:238–280CrossRefGoogle Scholar
  68. Sinclair EH, Zeppelin TK (2002) Seasonal and spatial differences in diet in the western stock of Steller sea lions. J Mamm 83:973–990CrossRefGoogle Scholar
  69. Springer AM, Estes JA, Van Vliet GB, Williams TM, Doak DF, Danner EM, Forney KA, Pfister B (2003) Sequential megafaunal collapse in the North Pacific Ocean: an ongoing legacy of industrial whaling? PNAS 100:12223–12228CrossRefGoogle Scholar
  70. Stabeno PJ, Ladd C, Reed RK (2009) Observations of the Aleutian North Slope Current, Bering Sea, 1996–2001. J Geophys Res C 114:C05015CrossRefGoogle Scholar
  71. Stenseth NC, Mysterud A, Ottersen G, Hurrell JW, Chan KS, Lima M (2002) Ecological effects of climate fluctuations. Science 297:1292–1296CrossRefGoogle Scholar
  72. Sugimoto T, Tadokoro K (1997) Interannual-interdecadal variations in zooplankton biomass, chlorophyll concentration and physical environment in the subarctic Pacific and Bering Sea. Fish Oceanogr 6:74–93CrossRefGoogle Scholar
  73. Sundblad G, Bergström U, Sandstöm A (2011) Ecological coherence of marine protected area networks: a spatial assessment using species distribution models. J Appl Ecol 48:112–120CrossRefGoogle Scholar
  74. Trites AW, Miller AJ, Maschner HDG, Alexander MA, Bograd SJ, Calder JA, Capotondi A, Coyle KO, DiLorenzo E, Finney BP, Gregr EJ, Grosch CE, Hare SR, Hunt GL, Jahncke J, Kachel NB, Kim H, Ladd C, Mantua NJ, Marzban C, Maslowski W, Mendelssohn R, Neilson DJ, Okkonen SR, Overland JE, Reedy-Maschner KL, Royer TC, Schwing FB, Wang JXL, Winship AJ (2007) Bottom–up forcing and the decline of Steller sea lions (Eumetopias jubatus) in Alaska: assessing the ocean climate hypothesis. Fish Oceanogr 16:46–67CrossRefGoogle Scholar
  75. Villegas-Amtmann S, Simmons SE, Kuhn CE, Huckstadt LA, Costa DP (2011) Latitudinal range influences the seasonal variation in the foraging behavior of marine top predators. PLoS ONE 6(8):e23166CrossRefGoogle Scholar
  76. Walline PD, Wilson CD, Hollowed AB, Stienessen SC (2012) Short-term effects of commercial fishing on the distribution and abundance of walleye pollock (Theragra chalcogramma). Can J Fish Aquat Sci 69:354–368CrossRefGoogle Scholar
  77. Ware DM, Thomson RE (2005) Bottom–up ecosystem trophic dynamics determine fish production in the Northeast Pacific. Science 308:1280–1284CrossRefGoogle Scholar
  78. Warneke RM, Shaughnessy PD (1985) Arctocephalus pusillus, the South African and Australian fur seal: taxonomy, evolution, biogeography, and life history. In: Ling JK, Bryden MM (eds) Studies of sea mammals in south latitudes. South Australian Museum, AdelaideGoogle Scholar
  79. Witman JD, Cusson M, Archambault P, Pershing AJ, Mieszkowska N (2008) The relationship between productivity and species diversity in temperate-Arctic marine ecosystems. Ecology 89:S66–S80CrossRefGoogle Scholar
  80. Yoo S, Batchelder HP, Peterson WT, Sydeman WJ (2008) Seasonal, interannual and event scale variation in North Pacific ecosystems. Prog Oceanogr 77:155–181CrossRefGoogle Scholar
  81. Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900–93. J Clim 10:1004–1020CrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2012

Authors and Affiliations

  • Michelle E. Lander
    • 1
  • Lowell W. Fritz
    • 1
  • Devin S. Johnson
    • 1
  • Miles G. Logsdon
    • 2
  1. 1.National Marine Mammal Laboratory, Alaska Fisheries Science CenterNational Marine Fisheries Service, NOAASeattleUSA
  2. 2.School of OceanographyUniversity of WashingtonSeattleUSA

Personalised recommendations