Skip to main content

Advertisement

Log in

Comparison of methods for determining key marine areas from tracking data

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

There is an urgent need to identify key marine areas for conservation, particularly in the high seas. A range of techniques have been applied to tracking data from higher predators, particularly seabirds and pinnipeds, to determine the areas of greatest use. This study compared three commonly used methods—kernel, first-passage time and state-space modelling—and a new approach, minimum displacement rate, for the analysis of data from the wandering albatross Diomedea exulans of Bird Island, South Georgia, tracked during the chick-rearing period. Applied to a single track, these four models identified similar marine areas as important. The greatest similarity in areas identified occurred when model assumptions were shared (such as slow speed indicating spatial preference) even when methods modelled these assumptions differently (e.g. Bayesian inference versus cumulative density surface). A gridded overlap approach applied to all tracks revealed core areas not apparent from results of any single analysis. The gridded approach also revealed spatial overlap between methods based on different assumptions (e.g. minimum displacement rate and kernel analysis) and between individuals. Although areas identified as important by kernel and first-passage time analysis of a single track were biased towards resting locations during darkness, this does not negate the requirement for their protection. Using the gridded overlap approach, two distinct core regions were identified for the wandering albatross; one close to the breeding colony and another 800 km to the North–West in the high seas. This convenient and pragmatic approach could be applied to large data sets and across species for the identification of a network of candidate marine protected areas in coastal and pelagic waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aarts G, MacKenzie M, McConnell B, Fedak M, Matthiopoulos J (2008) Estimating space-use and habitat preference from wildlife telemetry data. Ecography 31(1):140–160

    Article  Google Scholar 

  • Arcos JM, Bécares J, Villero D, Brotons L, Rodríguez B, Ruiz A (2012) Assessing the location and stability of foraging hotspots for pelagic seabirds: an approach to identify marine important bird areas (IBAs) in Spain. Biol Conserv. doi:10.1016/j.biocon.2011.12.011

  • Barraquand F, Benhamou S (2008) Animal movements in heterogeneous landscapes: identifying profitable places and homogeneous movement bouts. Ecology 89(12):3336–3348

    Google Scholar 

  • Beaulieu M, Ropert-Coudert Y, Le Maho Y, Ancel A (2010) Is abdominal implantation of devices a good alternative to external attachment? A comparative study in Adélie penguins. J Ornithol 151(3):579–586

    Article  Google Scholar 

  • Beyer HL (2004) Hawth's analysis tools for ArcGIS. Available at http://www.spatialecology.com/htools

  • BirdLife International (2004) BirdLife international tracking ocean wanderers: the global distribution of albatrosses and petrels. In: Global procellariiform tracking workshop, Gordon’s Bay, South Africa, 1–5 September 2003

  • Boyd WS, Tranquilla LM, Ryder JL, Shisko SG, Bertram DF (2008) Variation in marine distributions of Cassin’s Auklets (Ptychoramphus aleuticus) breeding at Triangle Island, British Columbia. Auk 125(1):158–166

    Article  Google Scholar 

  • Catry P, Phillips RA, Phalan B, Silk JRD, Croxall JP (2004) Foraging strategies of grey-headed albatrosses Thalassarche chrysostoma: integration of movements, activity and feeding events. Mar Ecol Prog Ser 280:261–273

    Article  Google Scholar 

  • Dietrich KS, Parrish JK, Melvin EF (2009) Understanding and addressing seabird bycatch in Alaska demersal longline fisheries. Biol Conserv 142(11):2642–2656

    Article  Google Scholar 

  • Durant JM, Hjermann DØ, Frederiksen M, Charrassin JB, Le Maho Y, Sabarros PS, Crawford RJM, Stenseth NC (2009) Pros and cons of using seabirds as ecological indicators. Clim Res 39(2):115–129

    Article  Google Scholar 

  • Eckert SA, Moore JE, Dunn DC, Van Buiten RS, Eckert KL, Halpin PN (2008) Modeling loggerhead turtle movement in the mediterranean: importance of body size and oceanography. Ecol Appl 18(2):290–308

    Article  Google Scholar 

  • Einoder LD (2009) A review of the use of seabirds as indicators in fisheries and ecosystem management. Fish Res 95(1):6–13

    Article  Google Scholar 

  • ESRI (2009) ArcGIS ArcMap v9.3.1. Environmental Systems Research Institute. Redlands, CA

  • Fauchald P, Tveraa T (2003) Using first-passage time in the analysis of area-restricted search and habitat selection. Ecology 84(2):282–288

    Article  Google Scholar 

  • Garthe S, Markones N, Mendel B, Sonntag N, Krause JC (2012) Protected areas for seabirds in German offshore waters: designation, retrospective consideration and current perspectives. Biol Conserv. doi:10.1016/j.biocon.2011.12.002

  • GRASS Development Team (2011) Geographic resources analysis support system (GRASS). GNU General Public License, USA

  • Grémillet D, Boulinier T (2009) Spatial ecology and conservation of seabirds facing global climate change: a review. Mar Ecol Prog Ser 391:121–137

    Article  Google Scholar 

  • Hamer KC, Humphreys EM, Magalhaes MC, Garthe S, Hennicke J, Peters G, Grémillet D, Skov H, Wanless S (2009) Fine-scale foraging behaviour of a medium-ranging marine predator. J Anim Ecol 78(4):880–889

    Article  CAS  Google Scholar 

  • Harris J, Haward M, Jabour J, Woehler EJ (2007) A new approach to selecting marine protected areas (MPAs) in the Southern Ocean. Antarct Sci 19(2):189–194

    Article  Google Scholar 

  • Hart T, Coulson T, Trathan PN (2010) Time series analysis of biologging data: autocorrelation reveals periodicity of diving behaviour in macaroni penguins. Anim Behav 79(4):845–855

    Article  Google Scholar 

  • Hemson G, Johnson P, South A, Kenward R, Ripley R, Macdonald D (2005) Are kernels the mustard? Data from global positioning system (GPS) collars suggests problems for kernel home-range analyses with least-squares cross-validation. J Anim Ecol 74(3):455–463. doi:10.1111/j.1365-2656.2005.00944.x

    Article  Google Scholar 

  • Johnson AR, Wiens JA, Milne BT, Crist TO (1992) Animal movements and population-dynamics in heterogeneous landscapes. Landsc Ecol 7(1):63–75

    Article  Google Scholar 

  • Jonsen ID, Flenming JM, Myers RA (2005) Robust state-space modeling of animal movement data. Ecology 86(11):2874–2880

    Article  Google Scholar 

  • Jonsen ID, Myers RA, James MC (2007) Identifying leatherback turtle foraging behaviour from satellite telemetry using a switching state-space model. Mar Ecol Prog Ser 337:255–264

    Article  Google Scholar 

  • Kareiva P, Odell G (1987) Swarms of predators exhibit ‘preytaxis’ if individual predators use area-restricted search. Am Nat 130(2):233–270

    Article  Google Scholar 

  • King MC, Beazley KF (2005) Selecting focal species for marine protected area network planning in the Scotia-Fundy region of Atlantic Canada. Aquatic Conservation: Marine and Freshwater Ecosystems 15(4):367–385

    Article  Google Scholar 

  • Laidre KL, Heide-Jørgensen MP, Logsdon ML, Hobbs RC, Dietz R, VanBlaricom GR (2004) Fractal analysis of narwhal space use patterns. Zoology 107(1):3–11

    Article  Google Scholar 

  • Link WA, Eaton MJ (2012) On thinning of chains in MCMC. Methods Ecol Evol 3(1):112–115

    Article  Google Scholar 

  • Louzao M, Hyrenbach KD, Arcos JM, Abello P, De Sola LG, Oro D (2006) Oceanographic habitat of an endangered Mediterranean procellariiform: implications for marine protected areas. Ecol Appl 16(5):1683–1695

    Article  Google Scholar 

  • Louzao M, Pinaud D, Péron C, Delord K, Wiegand T, Weimerskirch H (2011) Conserving pelagic habitats: seascape modelling of an oceanic top predator. J Appl Ecol 48(1):121–132

    Article  Google Scholar 

  • Mackley EK, Phillips RA, Silk JRD, Wakefield ED, Afanasyev V, Fox JW, Furness RW (2010) Free as a bird? Activity patterns of albatrosses during the nonbreeding period. Mar Ecol-Prog Ser 406:291–303. doi:10.3354/meps08532

    Article  Google Scholar 

  • Martin GR (1998) Eye structure and amphibious foraging in albatrosses. Proceedings of the Royal Society B: Biological Sciences 265(1397):665–671

    Article  Google Scholar 

  • Matthiopoulos J (2003) The use of space by animals as a function of accessibility and preference. Ecol Model 159(2–3):239–268

    Article  Google Scholar 

  • Nielsen A, Bigelow KA, Musyl MK, Sibert JR (2006) Improving light-based geolocation by including sea surface temperature. Fish Oceanogr 15(4):314–325. doi:10.1111/j.1365-2419.2005.00401.x

    Article  Google Scholar 

  • O’Brien SH, Webb A, Brewer MJ, Reid JB (2012) Use of kernel density estimation and maximum curvature to set marine protected area boundaries: identifying a special protection area for wintering red-throated divers in the UK. Biol Conserv. doi:10.1016/j.biocon.2011.12.033

  • Okubo A (2001) Diffustion and ecological problems: modern perspectives, 2nd edn. Springer, New York

    Google Scholar 

  • Oppel S, Meirinho A, Ramírez I, Gardner B, O’Connell AF, Miller PI, Louzao M (2011) Comparison of five modelling techniques to predict the spatial distribution and abundance of seabirds. Biol Conserv. doi:10.1016/j.biocon.2011.11.013

  • Patterson TA, Thomas L, Wilcox C, Ovaskainen O, Matthiopoulos J (2008) State-space models of individual animal movement. Trends Ecol Evol 23(2):87–94. doi:10.1016/j.tree.2007.10.009

    Article  Google Scholar 

  • Patterson TA, Basson M, Bravington MV, Gunn JS (2009) Classifying movement behaviour in relation to environmental conditions using hidden Markov models. J Anim Ecol 78(6):1113–1123

    Article  Google Scholar 

  • Phalan B, Phillips RA, Silk JRD, Afanasyev V, Fukuda A, Fox J, Catry P, Higuchi H, Croxall JP (2007) Foraging behaviour of four albatross species by night and day. Mar Ecol-Prog Ser 340:271–286

    Article  Google Scholar 

  • Phillips RA, Xavier JC, Croxall JP (2003) Effects of satellite transmitters on albatrosses and petrels. Auk 120(4):1082–1090

    Google Scholar 

  • Phillips RA, Croxall JP, Silk JRD, Briggs DR (2007) Foraging ecology of albatrosses and petrels from South Georgia: two decades of insights from tracking technologies. Aquat Conserv Mar Freshw Ecosyst 17:S6–S21. doi:10.1002/aqc.906

    Article  Google Scholar 

  • Pinaud D (2008) Quantifying search effort of moving animals at several spatial scales using first-passage time analysis: effect of the structure of environment and tracking systems. J Appl Ecol 45(1):91–99. doi:10.1111/j.1365-2664.2007.01370.x

    Article  Google Scholar 

  • R Development Core Team (2009) R: A language and environment for statistical computing. R-2.9.1 edn. R Foundation for Statistical Computing, Vienna, Austria

  • Redner S (2001) A guide to first passage time processes. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Robinson PW, Tremblay Y, Crocker DE, Kappes MA, Kuhn CE, Shaffer SA, Simmons SE, Costa DP (2007) A comparison of indirect measures of feeding behaviour based on ARGOS tracking data. Deep-Sea Research Part Ii-Topical Studies in Oceanography 54(3–4):356–368. doi:10.1016/j.dsr2.2006.11.020

    Google Scholar 

  • Rosenblatt M (1956) Remarks on some nonparametric estimates of a density-function. Ann Math Stat 27(3):832–837

    Article  Google Scholar 

  • Schick RS, Loarie SR, Colchero F, Best BD, Boustany A, Conde DA, Halpin PN, Joppa LN, McClellan CM, Clark JS (2008) Understanding movement data and movement processes: current and emerging directions. Ecol Lett 11(12):1338–1350. doi:10.1111/j.1461-0248.2008.01249.x

    Article  Google Scholar 

  • Seaman DE, Powell RA (1996) An evaluation of the accuracy of kernel density estimators for home range analysis. Ecology 77(7):2075–2085

    Article  Google Scholar 

  • Silverman B (1986) Density estimation for statistics and data analysis. Monographs on statistics and applied probability, vol 26. Chapman and Hall, London

  • Stillman RA, Sutherland WJ (1990) The optimal search path in a patchy environment. J Theor Biol 145(2):177–182

    Article  Google Scholar 

  • Suryan RM, Sato F, Balogh GR, David Hyrenbach K, Sievert PR, Ozaki K (2006) Foraging destinations and marine habitat use of short-tailed albatrosses: a multi-scale approach using first-passage time analysis. Deep Sea Res Part II 53(3–4):370–386

    Article  Google Scholar 

  • Thaxter CB, Lascelles B, Sugar K, Cook ASCP, Roos S, Bolton M, Langston RHW, Burton NHK (2012) Seabird foraging ranges as a preliminary tool for identifying candidate Marine Protected Areas. Biol Conserv. doi:10.1016/j.biocon.2011.12.009

  • Trathan PN, Bishop C, Maclean G, Brown P, Fleming A, Collins MA (2008) Linear tracks and restricted temperature ranges characterise penguin foraging pathways. Mar Ecol Prog Ser 370:285–294

    Article  Google Scholar 

  • Tremblay Y, Roberts AJ, Costa DP (2007) Fractal landscape method: an alternative approach to measuring area-restricted searching behavior. J Exp Biol 210(8):935. doi:10.1242/jeb.005462

    Article  Google Scholar 

  • Tremblay Y, Bertrand S, Henry RW, Kappes MA, Costa DP, Shaffer SA (2009) Analytical approaches to investigating seabird-environment interactions: a review. Mar Ecol Prog Ser 391:153–163

    Article  Google Scholar 

  • Vandenabeele SP, Shepard EL, Grogan A, Wilson RP (2012) When three per cent may not be three per cent; device-equipped seabirds experience variable flight constraints. Mar Biol 159(1):1–14

    Article  Google Scholar 

  • Wakefield ED, Phillips RA, Jason M, Akira F, Hiroyoshi H, Marshall GJ, Trathan PN (2009a) Wind field and sex constrain the flight speeds of central-place foraging albatrosses. Ecol Monogr 79(4):663–679

    Article  Google Scholar 

  • Wakefield ED, Phillips RA, Matthiopoulos J (2009b) Quantifying habitat use and preferences of pelagic seabirds using individual movement data: a review. Mar Ecol Prog Ser 391:165–182

    Article  Google Scholar 

  • Wakefield ED, Phillips RA, Trathan P, Arata J, Gales R, Huin N, Roberston G, Waugh SM, Weimerskirch H, Matthiopoulos J (2011) Habitat preference, accessibility and competition limit the global distribution of breeding black-browed albatrosses. Ecol Monogr 81:141–167

    Article  Google Scholar 

  • Waugh SM, Weimerskirch H (2003) Environmental heterogeneity and the evolution of foraging behaviour in long ranging greater albatrosses. Oikos 103(2):374–384

    Article  Google Scholar 

  • Wauters LA, Preatoni DG, Molinari A, Tosi G (2007) Radio-tracking squirrels: performance of home range density and linkage estimators with small range and sample size. Ecol Model 202(3–4):333–344

    Article  Google Scholar 

  • Weimerskirch H, Wilson RP (1992) When do wandering albatrosses diomedea-exulans forage. Mar Ecol-Prog Ser 86(3):297–300

    Google Scholar 

  • Weimerskirch H, Salamorland M, Sarrazin F, Jouventin P (1993) Foraging strategy of wandering albatrosses through the breeding season: a study using satellite telemetry. Auk 110:325–342

    Google Scholar 

  • Weimerskirch H, Cherel Y, Cuenot-Chaillet F, Ridoux V (1997) Alternative foraging strategies and resource allocation by male and female Wandering Albatrosses. Ecology 78(7):2051–2063

    Article  Google Scholar 

  • Weimerskirch H, Gault A, Cherel Y (2005) Prey distribution and patchiness: factors in foraging success and efficiency of Wandering Albatrosses. Ecology 86(10):2611–2622

    Article  Google Scholar 

  • Weimerskirch H, Pinaud D, Pawlowski F, Bost CA (2007) Does prey capture induce area-restricted search? A fine-scale study using GPS in a marine predator, the wandering albatross. Am Nat 170(5):734–743. doi:10.1086/522059

    Article  Google Scholar 

  • Wells BK, Field JC, Thayer JA, Grimes CB, Bograd SJ, Sydeman WJ, Schwing FB, Hewitt R (2008) Untangling the relationships among climate prey and top predators in an ocean ecosystem. Mar Ecol Prog Ser 364:15–29

    Article  Google Scholar 

  • Wilson LJ, McSorley CA, Gray CM, Dean BJ, Dunn TE, Webb A, Reid JB (2009) Radio-telemetry as a tool to define protected areas for seabirds in the marine environment. Biol Conserv 142(8):1808–1817

    Article  Google Scholar 

  • Witt MJ, Ăkesson S, Broderick AC, Coyne MS, Ellick J, Formia A, Hays GC, Luschi P, Stroud S, Godley BJ (2010) Assessing accuracy and utility of satellite-tracking data using Argos-linked Fastloc-GPS. Anim Behav 80(3):571–581

    Article  Google Scholar 

  • Wood AG, Naef-Daenzer B, Prince PA, Croxall JP (2000) Quantifying habitat use in satellite-tracked pelagic seabirds: application of kernel estimation to albatross locations. J Avian Biol 31(3):278–286

    Article  Google Scholar 

  • Worton BJ (1989) Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70(1):164–168

    Article  Google Scholar 

  • Xavier JC, Croxall JP, Trathan PN, Wood AG (2003) Feeding strategies and diets of breeding grey-headed and wandering albatrosses at South Georgia. Mar Biol 143(2):221–232

    Article  Google Scholar 

  • Xavier JC, Trathan PN, Croxall JP, Wood AG, Podesta G, Rodhouse PG (2004) Foraging ecology and interactions with fisheries of wandering albatrosses (Diomedea exulans) breeding at South Georgia. Fish Oceanogr 13(5):324–344

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to the South Georgia Heritage Trust and the Prince Albert II Monaco Foundation for funding of this project. We would like to thank three anonymous reviewers for their valuable input that greatly improved the manuscript. We are very grateful to the fieldworkers involved in the satellite-transmitter deployments at Bird Island, and to Andrew Wood for his assistance with data archiving. WS is funded by Arcadia. José Xavier was supported by the Foundation for Science and Technology (FCT), Portugal. Thanks to David Pinaud for contributing R code for running first-passage time analysis and to Tatsuya Amano for R code contributed for running state-space model. Thanks also to Andrew Balmford and Mike Brooke for their helpful comments on an early draft. The methods used comply with the current laws of the Government of South Georgia and the South Sandwich Islands. This research represents a contribution to the British Antarctic Survey Ecosystems Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Tancell.

Additional information

Communicated by S. Garthe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tancell, C., Phillips, R.A., Xavier, J.C. et al. Comparison of methods for determining key marine areas from tracking data. Mar Biol 160, 15–26 (2013). https://doi.org/10.1007/s00227-012-2050-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-2050-2

Keywords

Navigation