Advertisement

Marine Biology

, Volume 159, Issue 12, pp 2663–2673 | Cite as

Estimating photophysiological condition of endosymbiont-bearing Baculogypsina sphaerulata based on the holobiont color represented in CIE L*a*b* color space

  • Takashi Hosono
  • Kazuhiko Fujita
  • Hajime Kayanne
Original Paper

Abstract

Symbiont-bearing large benthic foraminifers (LBFs) are widely distributed around coral reefs. If the physiological responses of LBFs to environmental changes can be recognized at an individual level, LBFs could serve as highly accurate bioindicators. In this study, chlorophyll a, respiration, and photosynthesis of Baculogypsina sphaerulata individuals were measured, and whether these physiological traits could be estimated based on the color of the holobiont (foraminifera and the diatom symbionts) was examined. Chlorophyll a content was estimated using a* and b* values of holobiont color represented in CIE L*a*b* color space. Photosynthetic performance decreased significantly with increasing whiteness (L*). These results indicated chlorophyll content as well as photosynthetic performance of Baculogypsina could be directly estimated using the holobiont color. The increased whiteness in color and decreased photosynthetic performance were mainly observed under low-light environment, possibly indicating symbiotic algae were shrunk into the central part of the host shell due to prolonged exposure to adverse conditions.

Keywords

Coral Reef Chlorophyll Content Color Space Photosynthetic Performance Color Palette 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to extend our sincerest thanks to Yoichi Ide and Mina Kinoshita (Ocean Planning Co., Ltd.) for their assistance in conducting field work and to Takashi Nakamura and Yoji Kanda for chrolophyll measurements. We wish to express our appreciation to three anonymous reviewers and Editor Sven Uthicke for their helpful comments to improve this manuscript. This study was supported by JSPS KAKENHI (17740341) and JST/JICA’s Science and Technology Research Partnership for Sustainable Development (SATREPS, 0808918). The authors declare that they have no conflict of interest.

Supplementary material

227_2012_2024_MOESM1_ESM.eps (15.5 mb)
Supplementary material 1 (EPS 15915 kb)

References

  1. Bernhard JM (2000) Distinguishing live from dead foraminifera: methods review and proper applications. Micropaleontology 46(Suppl 1):38–46Google Scholar
  2. Bhagooli R, Hidaka M (2004) Release of zooxanthellae with intact photosynthetic activity by the coral Galaxea fascicularis in response to high temperature stress. Mar Biol 145:329–337. doi: 10.1007/s00227-004-1309-7 CrossRefGoogle Scholar
  3. Fujita K (2002) Does algal symbiont-bearing Foraminifera show bleaching like reef corals? Midoriishi: Rep of Akajima. Mar Sci Lab 13:9–11 (in Japanese)Google Scholar
  4. Fujita K (2004) A field colonization experiment on small-scale distributions of algal symbiont-bearing larger foraminifera on reef rubble. J Foraminifer Res 34:169–179. doi: 10.2113/34.3.169 CrossRefGoogle Scholar
  5. Fujita K, Fujimura H (2008) Organic and inorganic carbon production by algal symbiont-bearing foraminifera on northwest Pacific coral-reef flats. J Foraminifer Res 38:117–126. doi: 10.2113/gsjfr.38.2.117 CrossRefGoogle Scholar
  6. Hallock P (1981) Production of carbonate sediments by selected large benthic foraminifera on two Pacific coral reefs. J Sediment Res 51:467–474. doi: 10.1306/212f7cb1-2b24-11d7-8648000102c1865d Google Scholar
  7. Hallock P (1984) Distribution of selected species of living algal symbiont-bearing foraminifera on two Pacific coral reefs. J Foraminifer Res 14:250–261. doi: 10.2113/gsjfr.14.4.250 CrossRefGoogle Scholar
  8. Hallock P (2000) Symbiont-bearing foraminifera: harbingers of global change? Micropaleontology 46(Suppl 1):95–104Google Scholar
  9. Hallock P, Talge HK (1994) Symbiont loss (“bleaching”) in the reef-dwelling benthic foraminifer Amphistegina gibbosa in the Florida Keys in 1991–92. In: Ginsburg RH (compiler) Proceedings of the Colloquium on global aspects of coral reefs: health, hazards and history, 1993, RSMAS, University of Miami, FL, USA, pp 94–100Google Scholar
  10. Hallock P, Talge HK, Smith K, Cockey EM (1993) Bleaching in a reef-dwelling foraminifera, Amphistegina gibbosa. In: Richmond RH (ed) Proceedings of seventh international coral reef symposium. University of Guam Press, UOG Station, Guam, pp 44–49Google Scholar
  11. Hallock P, Talge HK, Cockey EM, Muller RG (1995) A new disease in reef-dwelling foraminifera; implications for coastal sedimentation. J Foraml Res 25:280–286. doi: 10.2113/gsjfr.25.3.280 CrossRefGoogle Scholar
  12. Hallock P, Lidz BH, Cockey-Burkhard EM, Donnelly KB (2003) Foraminifera as bioindicators in coral reef assessment and monitoring: the FORAM index. Environ Monit Assess 81:221–238CrossRefGoogle Scholar
  13. Hallock P, Williams DE, Fisher EM, Toler SK (2006) Bleaching in Foraminifera with algal symbionts: implications for reef monitoring and risk assessment. Anuário do Instituto de Geociências 29:108–128Google Scholar
  14. Hohenegger J (2004) Depth coenoclines and environmental considerations of western Pacific larger foraminifera. J Foraml Res 34:9–33. doi: 10.2113/0340009 CrossRefGoogle Scholar
  15. Hohenegger J, Yordanova E, Nakano Y, Tatzreiter F (1999) Habitats of larger foraminifera on the upper reef slope of Sesoko Island, Okinawa, Japan. Mar Micropaleontol 36:109–168. doi: 10.1016/S0377-8398(98)00030-9 CrossRefGoogle Scholar
  16. Hyams-Kaphzan O, Lee JJ (2008) Cytological examination and location of symbionts in “living sand”- Baculogypsina. J Foram Res 38:298–304. doi: 10.2113/gsjfr.38.4.298 CrossRefGoogle Scholar
  17. Ihaka R, Murrell P, Hornik K, Zeileis A (2011). colorspace: Color Space Manipulation. R package version 1.1-0. http://CRAN.R-project.org/package=colorspace
  18. Jeffery SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c 1, and c 2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen 167:194–197Google Scholar
  19. Kirk JT (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  20. Köhler-Rink S, Kühl M (2000) Microsensor studies of photosynthesis and respiration in larger symbiotic foraminifera. I The physico-chemical microenvironment of Marginopora vertebralis, Amphistegina lobifera and Amphisorus hemprichii. Mar Biol 137:473–486. doi: 10.1007/s002270000335 CrossRefGoogle Scholar
  21. Lee JJ (1980) Experimental studies of larger foraminifera and their symbionts from the Gulf of Elat on the Red Sea. J Foraml Res 10:31–47. doi: 10.2113/gsjfr.10.1.31 CrossRefGoogle Scholar
  22. Lee JJ (1990) Fine structure of the rhodophycean Porphyridium purpureum in situ in Peneroplis pertusus (Forskal) and P. acicularis (Batsch) and in axenic culture. J Foraml Res 20:162–169. doi: 10.2113/gsjfr.20.2.162 CrossRefGoogle Scholar
  23. Lee JJ, Anderson OR (1991) Biology of foraminifera. Academic Press, London, p 368Google Scholar
  24. Lee JJ, Correia M (2005) Endosymbiotic diatoms from previously unsampled habitats. Balaban, Philadelphia, PA, United StatesGoogle Scholar
  25. Lee MJ, Ellis R, Lee JJ (1982) A comparative study of photoadaptation in four diatoms isolated as endosymbionts from larger foraminifera. Mar Biol 68:193–197. doi: 10.1007/BF00397606 CrossRefGoogle Scholar
  26. Leutenegger S (1977) Ultrastructure and motility of dinophyceans symbiotic with larger, imperforated foraminifera. Mar Biol 44:157–164. doi: 10.1007/BF00386955 CrossRefGoogle Scholar
  27. Leutenegger S (1984) Symbiosis in benthic foraminifera; specificity and host adaptations. J Foraminifer Res 14:16–35. doi: 10.2113/gsjfr.14.1.16 CrossRefGoogle Scholar
  28. Muller PH (1978) 14 Carbon fixation and loss in a foraminiferal-algal symbiont system. J Foraminifer Res 8:35–41. doi: 10.2113/gsjfr.8.1.35 CrossRefGoogle Scholar
  29. Nobes K, Uthicke S, Henderson R (2008) Is light the limiting factor for the distribution of benthic symbiont bearing foraminifera on the Great Barrier Reef? J Exp Mar Biol Ecol 363:48–57. doi: 10.1016/j.jembe.2008.06.015 CrossRefGoogle Scholar
  30. Osawa Y, Fujita K, Umezawa Y, Kayanne H, Ide Y, Nagaoka T, Miyajima T, Yamano H (2010) Human impacts on large benthic foraminifers near a densely populated area of Majuro Atoll, Marshall Islands. Mar Poll Bull 60:1279–1287. doi: 10.1016/j.marpolbul.2010.03.014 CrossRefGoogle Scholar
  31. Prazeres MF, Martins SE, Bianchini A (2011) Biomarkers response to zinc exposure in the symbiont-bearing foraminifer Amphistegina lessonii (Amphisteginidae, Foraminifera). J Exp Mar Biol Ecol 407:116–121. doi: 10.1016/j.jembe.2011.07.015 CrossRefGoogle Scholar
  32. Prazeres MF, Martins SE, Bianchini A (2012) Assessment of water quality in coastal waters of Fernando de Noronha, Brazil: biomarker analyses in Amphistegina lessonii. J Foraminifer Res 42:56–65. doi: 10.2113/gsjfr.42.1.56 CrossRefGoogle Scholar
  33. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  34. Ross CA (1972) Biology and ecology of Marginopora vertebralis (Foraminiferida), Great Barrier Reef. J Eukaryot Microbiol 19:181–192CrossRefGoogle Scholar
  35. Sakai K, Nishihira M (1981) Population study of the benthic foraminifer Baculogypsina sphaerulata on the Okinawa reef flat and preliminary estimation of its annual production. Proc Fourth Int Coral Reef Symp Manila 2:763–766Google Scholar
  36. Schmidt C, Heinz P, Kucera M, Uthicke S (2011) Temperature-induced stress leads to bleaching in larger benthic foraminifera hosting endosymbiotic diatoms. Limnol Oceanorgr 56:1587–1602. doi: 10.4319/lo.2011.56.5.1587 CrossRefGoogle Scholar
  37. Schueth JD, Frank TD (2008) Reef foraminifera as bioindicators of coral reef health: low isles reef, Northern Great Barrier Reef, Australia. J Foraminifer Res 38:11–22. doi: 10.2113/gsjfr.38.1.11 CrossRefGoogle Scholar
  38. Siebeck UE, Marshall NJ, Klüter A, Hoegh-Guldberg O (2006) Monitoring coral bleaching using a colour reference card. Coral Reefs 25:453–460. doi: 10.1007/s00338-006-0123-8 CrossRefGoogle Scholar
  39. Talge HK, Hallock P (2003) Ultrastructural responses in field-bleached and experimentally stressed Amphistegina gibbosa (Class Foraminifera). J Eukaryot Microbiol 50:324–333. doi: 10.1111/j.1550-7408.2003.tb00143.x CrossRefGoogle Scholar
  40. Todd R (1960) Some observations on the distribution of Calcarina and Baculogypsina in the Pacific. Science. Reports of the Tohoku University, Second Series (Geology) Special 4:100–107Google Scholar
  41. Uthicke S, Fabricius KE (2012) Productivity gains do not compensate for reduced calcification under near-future ocean acidification in the photosynthetic benthic foraminifer species Marginopora vertebralis. Glob Change Biol. doi: 10.1111/j.1365-2486.2012.02715.x
  42. Uthicke S, Thompson A, Schaffelke B (2010) Effectiveness of benthic foraminiferal and coral assemblages as water quality indicators on inshore reefs of the Great Barrier Reef, Australia. Coral Reefs 29:209–225. doi: 10.1007/s00338-009-0574-9 CrossRefGoogle Scholar
  43. Uthicke S, Vogel N, Doyle J, Schmidt C, Humphrey C (2012) Interactive effects of climate change and eutrophication on the dinoflagellate-bearing benthic foraminifer Marginopora vertebralis. Coral Reefs 31:401–414. doi: 10.1007/s00338-011-0851-2 CrossRefGoogle Scholar
  44. van Dam JW, Negri AP, Mueller JF, Altenburger R, Uthicke S (2012a) Additive pressures of elevated sea surface temperatures and herbicides on symbiont-bearing foraminifera. PLoS One 7:e33900. doi: 10.1371/journal.pone.0033900 CrossRefGoogle Scholar
  45. van Dam JW, Negri AP, Mueller JF, Uthicke S (2012b) Symbiont-specific responses in foraminifera to the herbicide diuron. Mar Poll Bull 65:373–383. doi: 10.1016/j.marpolbul.2011.08.008 CrossRefGoogle Scholar
  46. Vogel N, Uthicke S (2012) Calcification and photobiology in symbiont-bearing benthic foraminifera and responses to a high CO2 environment. J Exp Mar Biol Ecol 424–425:15–24. doi: 10.1016/j.jembe.2012.05.008 CrossRefGoogle Scholar
  47. Walker R, Hallock P, Torres JJ, Vargo GA (2011) Photosynthesis and respiration in five species of benthic foraminifera that host algal endosymbionts. J Foraminifer Res 41:314–325CrossRefGoogle Scholar
  48. Williams DE, Hallock P (2004) Bleaching in Amphistegina gibbosa d’Orbigny (Class Foraminifera): observations from laboratory experiments using visible and ultraviolet light. Mar Biol 145:641–649. doi: 10.1007/s00227-004-1351-5 Google Scholar
  49. Williams DE, Hallock P, Talge HK, Harney JN, McRae G (1997) Responses of Amphistegina gibbosa populations in the Florida Keys (U.S.A.) to a multi-year stress event (1991–1996). J Foraminifer Res 27:264–269CrossRefGoogle Scholar
  50. Winters G, Holzman R, Blekhman A, Beer S, Loya Y (2009) Photographic assessment of coral chlorophyll contents: implications for ecophysiological studies and coral monitoring. J Exp Mar Biol Ecol 380:25–35. doi: 10.1016/j.jembe.2009.09.004 CrossRefGoogle Scholar
  51. Ziegler M, Uthicke S (2011) Photosynthetic plasticity of endosymbionts in larger benthic coral reef foraminifera. J Exp Mar Biol Ecol 407:70–80. doi: 10.1016/j.jembe.2011.07.009 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Takashi Hosono
    • 1
  • Kazuhiko Fujita
    • 2
  • Hajime Kayanne
    • 1
  1. 1.Department of Earth and Planetary Science, Graduate School of ScienceThe University of TokyoBunkyo-kuJapan
  2. 2.Department of Physics and Earth Sciences, Faculty of ScienceUniversity of the RyukyusNishiharaJapan

Personalised recommendations