Advertisement

Marine Biology

, Volume 159, Issue 11, pp 2583–2603 | Cite as

Ecological commonalities among pelagic fishes: comparison of freshwater ciscoes and marine herring and sprat

  • Thomas Mehner
  • Susan Busch
  • Catriona Clemmesen
  • Ingeborg Palm Helland
  • Franz Hölker
  • Jan Ohlberger
  • Myron A. Peck
Original Paper

Abstract

Systematic comparisons of the ecology between functionally similar fish species from freshwater and marine aquatic systems are surprisingly rare. Here, we discuss commonalities and differences in evolutionary history, population genetics, reproduction and life history, ecological interactions, behavioural ecology and physiological ecology of temperate and Arctic freshwater coregonids (vendace and ciscoes, Coregonus spp.) and marine clupeids (herring, Clupea harengus, and sprat, Sprattus sprattus). We further elucidate potential effects of climate warming on these groups of fish based on the ecological features of coregonids and clupeids documented in the previous parts of the review. These freshwater and marine fishes share a surprisingly high number of similarities. Both groups are relatively short-lived, pelagic planktivorous fishes. The genetic differentiation of local populations is weak and seems to be in part correlated to an astonishing variability of spawning times. The discrete thermal window of each species influences habitat use, diel vertical migrations and supposedly also life history variations. Complex life cycles and preference for cool or cold water make all species vulnerable to the effects of global warming. It is suggested that future research on the functional interdependence between spawning time, life history characteristics, thermal windows and genetic differentiation may profit from a systematic comparison of the patterns found in either coregonids or clupeids.

Keywords

Great Lake Diel Vertical Migration Laurentian Great Lake Pelagic Habitat Bornholm Basin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Research that has generated a part of the results mentioned in this contribution was primarily funded by the AQUASHIFT priority program of the German Research Council (DFG) (contract numbers: Me 1686/5-1, 5-2, 5-3 to TM; Pe 1129/2-3 to MP; Cl 126/3-1, 3-2, 3-3 to CC). The German Bundesländer Mecklenburg-Vorpommern and Schleswig–Holstein, the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), the EU FP7 program “Forage Fish Interactions (FACTS—EU # 244966) and the “GLOBEC-Germany” program (German Federal Ministry for Education and Research, FKZ 03F0320E) provided additional financial support.

References

  1. Airaksinen KJ (1968) Preliminary notes on the winter-spawning vendace (Coregonus albula L.) in some Finnish lakes. Ann Zool Fenn 5:312–314Google Scholar
  2. Alheit J, Möllmann C, Dutz J, Kornilovs G, Loewe P, Mohrholz V, Wasmund N (2005) Synchronous ecological regime shifts in the central Baltic and the North Sea in the late 1980 s. ICES J Mar Sci 62:1205–1215CrossRefGoogle Scholar
  3. Amundsen PA, Siwertsson A, Primicerio R, Bøhn T (2009) Long-term responses of zooplankton to invasion by a planktivorous fish in a subarctic watercourse. Freshw Biol 54:24–34CrossRefGoogle Scholar
  4. Aneer G (1982) In situ observations of Baltic herring (Clupea harengus membras) spawning behaviour in the Asko-Landsort area, northern Baltic proper. Mar Biol 74:105–110CrossRefGoogle Scholar
  5. Anwand K, Staaks G, Valentin M (1997) Zwei unterschiedliche Formen von Coregonus albula L. (Teleostei; Coregonidae) im nordbrandenburgischen Stechlinsee (Deutschland). Z Fischk 4 (1/2):3–14Google Scholar
  6. Armstrong MP, Cadrin SX (2001) Morphometric variation among spawning groups of the Gulf of Maine-Georges Bank herring complex. In: Herring: expectations for a new millennium Alaska Sea Grant College Program Report, pp 575–590Google Scholar
  7. Arthur JR, Arai HP (1984) Annotated checklist and bibliography of parasites of herring (Clupea harengus L.). Can Spec Publ Fish Aquat Sci 70:1–26Google Scholar
  8. Axelsen BE, Nottestad L, Ferno A, Johannessen A, Misund OA (2000) ‘Await’ in the pelagic: dynamic trade-off between reproduction and survival within a herring school splitting vertically during spawning. Mar Ecol Progr Ser 205:259–269CrossRefGoogle Scholar
  9. Axenrot T, Didrikas T, Danielsson C, Hansson S (2004) Diel patterns in pelagic fish behaviour and distribution observed from a stationary, bottom-mounted, and upward-facing transducer. ICES J Mar Sci 61:1100–1104CrossRefGoogle Scholar
  10. Bailey RS (1982) Problems in the management of short-lived pelagic fish as exemplified by North Sea sprat. Rapp p -v Reun Cons Int Explor Mer 177:477–488Google Scholar
  11. Bailey KM, Houde ED (1989) Predation on eggs and larvae of marine fishes and the recruitment problem. Adv Mar Biol 25:1–83CrossRefGoogle Scholar
  12. Barz K, Hirche HJ (2005) Seasonal development of scyphozoan medusae and the predatory impact of Aurelia aurita on the zooplankton community in the Bornholm Basin (central Baltic Sea). Mar Biol 147:465–476CrossRefGoogle Scholar
  13. Baumann H, Grohsler T, Kornilovs G, Makarchouk A, Feldmann V, Temming A (2006a) Temperature-induced regional and temporal growth differences in Baltic young-of-the-year sprat Sprattus sprattus. Mar Ecol Progr Ser 317:225–236CrossRefGoogle Scholar
  14. Baumann H, Hinrichsen HH, Möllmann C, Köster FW, Malzahn AM, Temming A (2006b) Recruitment variability in Baltic Sea sprat (Sprattus sprattus) is tightly coupled to temperature and transport patterns affecting the larval and early juvenile stages. Can J Fish Aquat Sci 63:2191–2201CrossRefGoogle Scholar
  15. Beier U (2001) Habitat distribution and size structure in freshwater fish communities: effects of vendace on interactions between perch and roach. J Fish Biol 59:1437–1454Google Scholar
  16. Bekkevold D, Andre C, Dahlgren TG, Clausen LAW, Torstensen E, Mosegaard H, Carvalho GR, Christensen TB, Norlinder E, Ruzzante DE (2005) Environmental correlates of population differentiation in Atlantic herring. Evolution 59:2656–2668Google Scholar
  17. Bekkevold D, Clausen LAW, Mariani S, Andre C, Christensen TB, Mosegaard H (2007) Divergent origins of sympatric herring population components determined using genetic mixture analysis. Mar Ecol Progr Ser 337:187–196CrossRefGoogle Scholar
  18. Bernatchez L, Renaut S, Whiteley AR, Derome N, Jeukens J, Landry L, Lu GQ, Nolte AW, Østbye K, Rogers SM, St-Cyr J (2010) On the origin of species: insights from the ecological genomics of lake whitefish. Phil Trans R Soc B 365:1783–1800CrossRefGoogle Scholar
  19. Blaxter JHS (1962) The feeding of herring larvae and their ecology in relation to feeding. Calif Coop Oceanic Fish Invest Rep 10:79–88Google Scholar
  20. Blaxter JHS, Batty RS (1984) The herring swimbladder—loss and gain of gas. J Mar Biol Assoc UK 64:441–459CrossRefGoogle Scholar
  21. Blaxter JHS, Hempel G (1963) The influence of egg size on herring larvae, Clupea harengus L. J Conseil Perm Int pour l’ Explor de la Mer 28:211–240Google Scholar
  22. Blaxter JHS, Hunter JR (1982) The biology of the clupeoid fishes. Adv Mar Biol 20:3–223Google Scholar
  23. Bochdansky AB, Grønkjær P, Pepin P, Leggett WC (2008) Food limitation in larval fish: ontogenetic variation in feeding scope and its potential effect on survival. Mar Ecol Progr Ser 367:239–248CrossRefGoogle Scholar
  24. Bøhn T, Amundsen PA (2001) The competitive edge of an invading specialist. Ecology 82:2150–2163Google Scholar
  25. Bøhn T, Sandlund OT, Amundsen PA, Primicerio R (2004) Rapidly changing life history during invasion. Oikos 106:138–150CrossRefGoogle Scholar
  26. Brett JR (1971) Energetic responses of salmon to temperature—study of some thermal relations in physiology and freshwater ecology of Sockeye salmon (Oncorhynchus nerka). Am Zool 11:99–113Google Scholar
  27. Brown RJ, Bickford N, Severin K (2007) Otolith trace element chemistry as an indicator of anadromy in Yukon River drainage coregonine fishes. Trans Am Fish Soc 136:678–690CrossRefGoogle Scholar
  28. Bunnell DB, Adams JV, Gorman OT, Madenjian CP, Riley SC, Roseman EF, Schaeffer JS (2010) Population synchrony of a native fish across three Laurentian Great Lakes: evaluating the effects of dispersal and climate. Oecologia 162:641–651CrossRefGoogle Scholar
  29. Busch S, Mehner T (2009) Hydroacoustic estimates of fish population depths and densities at increasingly longer time scales. Int Rev Hydrobiol 94:91–102CrossRefGoogle Scholar
  30. Busch S, Johnson BM, Mehner T (2011) Energetic costs and benefits of cyclic habitat switching: a bioenergetics model analysis of diel vertical migration in coregonids. Can J Fish Aquat Sci 68:706–717CrossRefGoogle Scholar
  31. Busch S, Kirillin G, Mehner T (2012) Plasticity in habitat use determines metabolic response of fish to global warming in stratified lakes. Oecologia. doi: 10.1007/s00442-012-2286-z
  32. Calvo E, Simo R, Coma R, Ribes M, Pascual J, Sabates A, Gili JM, Pelejero C (2011) Effects of climate change on Mediterranean marine ecosystems: the case of the Catalan Sea. Clim Res 50:1–29CrossRefGoogle Scholar
  33. Campbell N, Cross MA, Chubb JC, Cunningham CO, Hatfield EMC, MacKenzie K (2007) Spatial and temporal variations in parasite prevalence and infracommunity structure in herring (Clupea harengus L.) caught to the west of the British Isles and in the North and Baltic Seas: implications for fisheries science. J Helminthol 81:137–146CrossRefGoogle Scholar
  34. Cardinale M, Casini M, Arrhenius F (2002) The influence of biotic and abiotic factors on the growth of sprat (Sprattus sprattus) in the Baltic Sea. Aquat Liv Res 15:273–281CrossRefGoogle Scholar
  35. Cardinale M, Casini M, Arrhenius F, Hakansson N (2003) Diel spatial distribution and feeding activity of herring (Clupea harengus) and sprat (Sprattus sprattus) in the Baltic Sea. Aquat Liv Res 16:283–292CrossRefGoogle Scholar
  36. Casini M, Cardinale M, Arrhenius F (2004) Feeding preferences of herring (Clupea harengus) and sprat (Sprattus sprattus) in the southern Baltic Sea. ICES J Mar Sci 61:1267–1277CrossRefGoogle Scholar
  37. Casini M, Bartolino V, Molinero JC, Kornilovs G (2010) Linking fisheries, trophic interactions and climate: threshold dynamics drive herring Clupea harengus growth in the central Baltic Sea. Mar Ecol Progr Ser 413:241–252CrossRefGoogle Scholar
  38. Clemens BJ, Crawford SS (2009) The ecology of body size and depth use by bloater (Coregonus hoyi Gill) in the Laurentian great lakes: patterns and hypotheses. Rev Fish Sci 17:174–186CrossRefGoogle Scholar
  39. Coyne JA, Orr AH (2004) Speciation. Sinauer, Sunderland, MAGoogle Scholar
  40. Crowder LB, Crawford HL (1984) Ecological shifts in resource use by bloaters in Lake Michigan. Trans Am Fish Soc 113:694–700CrossRefGoogle Scholar
  41. Cushing DH (1975) Marine ecology and fisheries. Cambridge University Press, CambridgeGoogle Scholar
  42. Daewel U, Peck MA, Kuhn W, St John MA, Alekseeva I, Schrum C (2008) Coupling ecosystem and individual-based models to simulate the influence of environmental variability on potential growth and survival of larval sprat (Sprattus sprattus L.) in the North Sea. Fish Oceanogr 17:333–351CrossRefGoogle Scholar
  43. Debes PV, Zachos FE, Hanel R (2008) Mitochondrial phylogeography of the European sprat (Sprattus sprattus L., Clupeidae) reveals isolated climatically vulnerable populations in the Mediterranean Sea and range expansion in the northeast Atlantic. Mol Ecol 17:3873–3888CrossRefGoogle Scholar
  44. Dembinski W (1971) Vertical distribution of vendace (Coregonus albula L.) and other pelagic fish species in some Polish lakes. J Fish Biol 3:341–357CrossRefGoogle Scholar
  45. DeWoody JA, Avise JC (2000) Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J Fish Biol 56:461–473CrossRefGoogle Scholar
  46. Dickey-Collas M, Nash RDM, Brunel T, van Damme CJG, Marshall CT, Payne MR, Corten A, Geffen AJ, Peck MA, Hatfield EMC, Hintzen NT, Enberg K, Kell LT, Simmonds EJ (2010) Lessons learned from stock collapse and recovery of North Sea herring: a review. ICES J Mar Sci 67:1875–1886CrossRefGoogle Scholar
  47. Dulcic J (1998) Larval growth of sprat, Sprattus sprattus phalericus, larvae in the Northern Adriatic. Fish Res 36:117–126CrossRefGoogle Scholar
  48. Elliott JA, Bell VA (2011) Predicting the potential long-term influence of climate change on vendace (Coregonus albula) habitat in Bassenthwaite Lake, UK. Freshw Biol 56:395–405CrossRefGoogle Scholar
  49. Elwertowski J (1960) Biologische Grundlagen der Sprottenfischerei in der östlichen und mittleren Ostsee. Fischerei-Forschung 3(4):1–19Google Scholar
  50. Fraser DJ, Weir LK, Bernatchez L, Hansen MM, Taylor EB (2011) Extent and scale of local adaptation in salmonid fishes: review and meta-analysis. Heredity 106:404–420CrossRefGoogle Scholar
  51. Gaggiotti OE, Bekkevold D, Jorgensen HBH, Foll M, Carvalho GR, Andre C, Ruzzante DE (2009) Disentangling the effects of evolutionary, demographic, and environmental factors influencing genetic structure of natural populations: Atlantic herring as a case study. Evolution 63:2939–2951CrossRefGoogle Scholar
  52. Gamble AE, Hrabik TR, Stockwell JD, Yule DL (2011a) Trophic connections in Lake Superior Part I: the offshore fish community. J Great Lakes Res 37:541–549CrossRefGoogle Scholar
  53. Gamble AE, Hrabik TR, Yule DL, Stockwell JD (2011b) Trophic connections in Lake Superior Part II: the nearshore fish community. J Great Lakes Res 37:550–560CrossRefGoogle Scholar
  54. Geffen AJ (2009) Advances in herring biology: from simple to complex, coping with plasticity and adaptability. ICES J Mar Sci 66:1688–1695CrossRefGoogle Scholar
  55. Gjelland KØ, Bøhn T, Amundsen PA (2007) Is coexistence mediated by microhabitat segregation? An in-depth exploration of a fish invasion. J Fish Biol 71:196–209CrossRefGoogle Scholar
  56. Gjelland KØ, Bøhn T, Horne JK, Jensvoll I, Knudsen FR, Amundsen PA (2009) Planktivore vertical migration and shoaling under a subarctic light regime. Can J Fish Aquat Sci 66:525–539CrossRefGoogle Scholar
  57. Graham CT, Harrod C (2009) Implications of climate change for the fishes of the British Isles. J Fish Biol 74:1143–1205CrossRefGoogle Scholar
  58. Gregersen F, Vøllestad LA, Østbye K, Aass P, Hegge O (2011) Temperature and food-level effects on reproductive investment and egg mass in vendace, Coregonus albula. Fish Man Ecol 18:263–269CrossRefGoogle Scholar
  59. Gröger JP, Kruse GH, Rohlf N (2010) Slave to the rhythm: how large-scale climate cycles trigger herring (Clupea harengus) regeneration in the North Sea. ICES J Mar Sci 67:454–465CrossRefGoogle Scholar
  60. Grygiel W (1999) Synoptic survey of pathological symptoms in herring (Clupea harengus) and sprat (Sprattus sprattus) in the Baltic Sea. ICES J Mar Sci 56:169–174CrossRefGoogle Scholar
  61. Guelinckx J, Maes J, De Brabandere L, Dehairs F, Ollevier F (2006) Migration dynamics of clupeoids in the Schelde estuary: a stable isotope approach. Estuar Coast Shelf Sci 66:612–623CrossRefGoogle Scholar
  62. Hamrin SF (1983) The food preference of vendace (Coregonus albula) in South Swedish forest lakes including the predation effect on zooplankton populations. Hydrobiologia 11:121–128CrossRefGoogle Scholar
  63. Hamrin SF (1986) Vertical distribution and habitat partitioning between different size classes of vendace, Coregonus albula, in thermally stratified lakes. Can J Fish Aquat Sci 43:1617–1625CrossRefGoogle Scholar
  64. Hamrin SF, Persson L (1986) Asymmetrical competition between age classes as a factor causing population oscillations in an obligate planktivorous fish species. Oikos 47:223–232CrossRefGoogle Scholar
  65. Harden Jones FR (1968) Fish migration. Edward Arnold, LondonGoogle Scholar
  66. Harrod C, Griffiths D, McCarthy TK, Rosell R (2001) The Irish pollan, Coregonus autumnalis: options for its conservation. J Fish Biol 59:339–355CrossRefGoogle Scholar
  67. Haslob H, Rohlf N, Schnack D (2009) Small scale distribution patterns and vertical migration of North Sea herring larvae (Clupea harengus, Teleostei: Clupeidea) in relation to abiotic and biotic factors. Sci Mar 73:13–22Google Scholar
  68. Haslob H, Tomkiewicz J, Hinrichsen HH, Kraus G (2011) Spatial and interannual variability in Baltic sprat batch fecundity. Fish Res 110:289–297CrossRefGoogle Scholar
  69. Heath M, Nicoll N (1991) Infection of larval herring by helminth parasites in the North Sea and the effect on feeding incidence. Cont Shelf Res 11:1477–1489CrossRefGoogle Scholar
  70. Heath MR, Henderson EW, Baird DL (1988) Vertical distribution of herring larvae in relation to physical mixing and illumination. Mar Ecol Progr Ser 47:211–228CrossRefGoogle Scholar
  71. Heath MR, Brander K, Munk P, Rankine P (1991) Vertical distribution of autumn spawned larval herring (Clupea harengus L.) in the North Sea. Cont Shelf Res 11:1425–1452CrossRefGoogle Scholar
  72. Heikinheimo O (2001) Effect of predation on the low-density dynamics of vendace: significance of the functional response. Can J Fish Aquat Sci 58:1909–1923CrossRefGoogle Scholar
  73. Heikinheimo O, Huuskonen H, Karjalainen J (2006) Location of spawning grounds of vendace (Coregonus albula (L.)): implication for dispersion of newly hatched larvae. Verh Int Ver Limnol 29:1725–1728Google Scholar
  74. Helland IP, Freyhof J, Kasprzak P, Mehner T (2007) Temperature sensitivity of vertical distributions of zooplankton and planktivorous fish in a stratified lake. Oecologia 151:322–330CrossRefGoogle Scholar
  75. Helland IP, Harrod C, Freyhof J, Mehner T (2008) Coexistence of a pair of pelagic planktivorous coregonid fish. Evol Ecol Res 10:373–390Google Scholar
  76. Helland IP, Vøllestad LA, Freyhof J, Mehner T (2009) Morphological differences between two ecologically similar sympatric fishes. J Fish Biol 75:2756–2767CrossRefGoogle Scholar
  77. Helminen H, Sarvala J (1994) Population regulation of vendace (Coregonus albula) in Lake Pyhäjärvi, southwest Finland. J Fish Biol 45:387–400Google Scholar
  78. Helminen H, Sarvala J (1997) Responses of Lake Pyhäjärvi (southwestern Finland) to variable recruitment of the major planktivorous fish, vendace (Coregonus albula). Can J Fish Aquat Sci 54:32–40CrossRefGoogle Scholar
  79. Helminen H, Auvinen H, Hirvonen A, Sarvala J, Toivonen J (1993) Year-class fluctuations of vendace (Coregonus albula) in Lake Pyhäjärvi, Southwest Finland, during 1971–90. Can J Fish Aquat Sci 50:925–931CrossRefGoogle Scholar
  80. Helminen H, Sarvala J, Karjalainen J (1997) Patterns in vendace recruitment in Lake Pyhäjärvi, south-west Finland. J Fish Biol 51 (suppl A):303–316Google Scholar
  81. Henault M, Fortin R (1989) Comparison of meristic and morphometric characters among spring-spawning and fall-spawning ecotypes of cisco (Coregonus artedii) in Southern Quebec, Canada. Can J Fish Aquat Sci 46:166–173CrossRefGoogle Scholar
  82. Henault M, Fortin R (1993) Status of the spring spawning cisco population (Coregonus sp.) at Lac des Ecorces. Can Field Nat 107:402–409Google Scholar
  83. Hendry AP (2009) Ecological speciation! Or the lack thereof? Can J Fish Aquat Sci 66:1383–1398CrossRefGoogle Scholar
  84. Hinrichsen HH, Kraus G, Voss R, Stepputtis D, Baumann H (2005) The general distribution pattern and mixing probability of Baltic sprat juvenile populations. J Mar Syst 58:52–66CrossRefGoogle Scholar
  85. Hinrichsen HH, Peck MA, Schmidt J, Huwer B, Voss R (2010) Survival probability of larval sprat in response to decadal changes in diel vertical migration behavior and prey abundance in the Baltic Sea. Limnol Oceanogr 55:1485–1498CrossRefGoogle Scholar
  86. Hoff MH, Pronin NM, Baldanova DR (1997) Parasites of lake herring (Coregonus artedi) from Lake Superior, with special reference to use of parasites as markers of stock structure. J Great Lakes Res 23:458–467CrossRefGoogle Scholar
  87. Houde ED (1987) Fish early life dynamics and recruitment variability. Am Fish Soc Symp 2:17–29Google Scholar
  88. Houde ED (1989) Subtleties and episodes in the early life of fishes. J Fish Biol 35:29–38CrossRefGoogle Scholar
  89. Hrabik TR, Jensen OP, Martell SJD, Walters CJ, Kitchell JF (2006) Diel vertical migration in the Lake Superior pelagic community. I. Changes in vertical migration of coregonids in response to varying predation risk. Can J Fish Aquat Sci 63:2286–2295CrossRefGoogle Scholar
  90. Hudson AG, Vonlanthen P, Müller R, Seehausen O (2007) Review: the geography of speciation and adaptive radiation in coregonines. Arch Hydrobiol Spec Issues Advanc Limnol 60:111–146Google Scholar
  91. Hudson AG, Vonlanthen P, Seehausen O (2011) Rapid parallel adaptive radiations from a single hybridogenic ancestral population. Proc R Soc B 278:58–66CrossRefGoogle Scholar
  92. Hufnagl M, Peck MA (2011) Physiological-based modelling of larval Atlantic herring (Clupea harengus) foraging and growth: Insights on climate-driven life history scheduling. ICES J Mar Sci 68:1170–1188CrossRefGoogle Scholar
  93. Huusko A, Sutela T (1998) Diel feeding periodicity in larvae of the vendace (Coregonus albula L.) and influence of food availability and environmental factors on food intake. Ecol Freshw Fish 7:69–77CrossRefGoogle Scholar
  94. Huusko A, Vuorimies O, Sutela T (1996) Temperature- and light-mediated predation by perch on vendace larvae. J Fish Biol 49:441–457CrossRefGoogle Scholar
  95. Iles TD, Sinclair M (1982) Atlantic herring—stock discreteness and abundance. Science 215:627–633CrossRefGoogle Scholar
  96. Jacobson PC, Stefan HG, Pereira DL (2010) Coldwater fish oxythermal habitat in Minnesota lakes: influence of total phosphorus, July air temperature, and relative depth. Can J Fish Aquat Sci 67:2002–2013CrossRefGoogle Scholar
  97. Jensen OP, Hansson S, Didrikas T, Stockwell JD, Hrabik TR, Axenrot T, Kitchell JF (2011) Foraging, bioenergetic and predation constraints on diel vertical migration: field observations and modelling of reverse migration by young-of-the-year herring Clupea harengus. J Fish Biol 78:449–465CrossRefGoogle Scholar
  98. Jobling M (1981) The influences of feeding on the metabolic rate of fishes: a short review. J Fish Biol 18:385–400CrossRefGoogle Scholar
  99. Johannessen A, Blom G, Folkvord A (2000) Differences in growth pattern between spring and autumn spawned herring (Clupea harengus L.) larvae. Sarsia 85:461–466Google Scholar
  100. Jørgensen HBH, Hansen MM, Loeschcke V (2005) Spring-spawning herring (Clupea harengus L.) in the southwestern Baltic Sea: do they form genetically distinct spawning waves? ICES J Mar Sci 62:1065–1075Google Scholar
  101. Jørgensen HBH, Pertoldi C, Hansen MM, Ruzzante DE, Loeschcke V (2008) Genetic and environmental correlates of morphological variation in a marine fish: the case of Baltic Sea herring (Clupea harengus). Can J Fish Aquat Sci 65:389–400CrossRefGoogle Scholar
  102. Jurvelius J, Marjomäki TJ (2008) Night, day, sunrise, sunset: do fish under snow and ice recognize the difference? Freshw Biol 53:2287–2294CrossRefGoogle Scholar
  103. Kahilainen KK, Østbye K, Harrod C, Shikano T, Malinen T, Merilä J (2011a) Species introduction promotes hybridization and introgression in Coregonus: is there sign of selection against hybrids? Mol Ecol 20:3838–3855CrossRefGoogle Scholar
  104. Kahilainen KK, Siwertson A, Gjelland KØ, Knudsen R, Bøhn T, Amundsen P-A (2011b) The role of gill raker number variability in adaptive radiation of coregonid fish. Evol Ecol 25:573–588CrossRefGoogle Scholar
  105. Karjalainen J (1992) Food ingestion, density-dependent feeding and growth of vendace (Coregonus albula (L)) larvae. Ann Zool Fenn 29:93–103Google Scholar
  106. Karjalainen J, Viljanen M (1993) Changes in the zooplankton community of Lake Puruvesi, Finland, in relation to the stock of vendace (Coregonus albula (L.)). Verh Int Ver Limnol 25:564–566Google Scholar
  107. Karjalainen J, Auvinen H, Helminen H, Marjomäki TJ, Niva T, Sarvala J, Viljanen M (2000) Unpredictability of fish recruitment: interannual variation in young-of-the-year abundance. J Fish Biol 56:837–857CrossRefGoogle Scholar
  108. Karjalainen J, Helminen H, Huusko A, Huuskonen H, Marjomäki TJ, Pääkönen J-P, Sarvala J, Viljanen M (2002) Littoral-pelagic distribution of newly-hatched vendace and European whitefish larvae in Finnish lakes. Arch Hydrobiol Spec Issues Adv Limnol 57:367–382Google Scholar
  109. Killen SS, Atkinson D, Glazier DS (2010) The intraspecific scaling of metabolic rate with body mass in fishes depends on lifestyle and temperature. Ecol Lett 13:184–193CrossRefGoogle Scholar
  110. Klinkhardt MB (1996) Der Hering: Clupea harengus. Spektrum Akademischer Verlag, BerlinGoogle Scholar
  111. Koho J, Karjalainen J, Viljanen M (1991) Effects of temperature, food density and time of hatching on growth, survival and feeding of vendace (Coregonus albula (L.)) larvae. Aqua Fenn 21:63–73Google Scholar
  112. Kordas RL, Harley CDG, O’Connor MI (2011) Community ecology in a warming world: the influence of temperature on interspecific interactions in marine systems. J Exp Mar Biol Ecol 400:218–226CrossRefGoogle Scholar
  113. Köster FW, Möllmann C (1997) Predation by sprat and herring on early life stages of cod and sprat in the Central Baltic. Proceedings symposium on forage fishes in marine ecosystems, Alaska Sea Grant College Program 97-01:41–70Google Scholar
  114. Köster FW, Möllmann C (2000a) Egg cannibalism in Baltic sprat Sprattus sprattus. Mar Ecol Progr Ser 196:269–277CrossRefGoogle Scholar
  115. Köster FW, Möllmann C (2000b) Trophodynamic control by clupeid predators on recruitment success in Baltic cod? ICES J Mar Sci 57:310–323CrossRefGoogle Scholar
  116. Köster FW, Hinrichsen HH, Schnack D, St John MA, MacKenzie BR, Tomkiewicz J, Möllmann C, Kraus G, Plikshs M, Makarchouk A, Aro E (2003) Recruitment of Baltic cod and sprat stocks: identification of critical life stages and incorporation of environmental variability into stock-recruitment relationships. Sci Mar 67:129–154Google Scholar
  117. Kottelat M, Freyhof J (2007) Handbook of European freshwater fishes. Kottelat and Freyhof, Cornot, BerlinGoogle Scholar
  118. Kraus G, Mohrholz V, Voss R, Dickmann M, Hinrichsen HH, Herrmann JP (2004) Consequences of summer inflow events on the reproduction cycle of Baltic sprat. ICES C M 2008/L:19Google Scholar
  119. Larsson LC, Laikre L, Palm S, Andre C, Carvalho GR, Ryman N (2007) Concordance of allozyme and microsatellite differentiation in a marine fish, but evidence of selection at a microsatellite locus. Mol Ecol 16:1135–1147CrossRefGoogle Scholar
  120. Larsson LC, Laikre L, Andre C, Dahlgren TG, Ryman N (2010) Temporally stable genetic structure of heavily exploited Atlantic herring (Clupea harengus) in Swedish waters. Heredity 104:40–51CrossRefGoogle Scholar
  121. Levy DA (1990) Sensory mechanism and selective advantage for diel vertical migration in juvenile sockeye salmon, Oncorhynchus nerka. Can J Fish Aquat Sci 47:1796–1802CrossRefGoogle Scholar
  122. Limborg MT, Pedersen JS, Hemmer-Hansen J, Tomkiewicz J, Bekkevold D (2009) Genetic population structure of European sprat Sprattus sprattus: differentiation across a steep environmental gradient in a small pelagic fish. Mar Ecol Progr Ser 379:213–224CrossRefGoogle Scholar
  123. Liso S, Gjelland KO, Reshetnikov YS, Amundsen PA (2011) A planktivorous specialist turns rapacious: piscivory in invading vendace Coregonus albula. J Fish Biol 78:332–337CrossRefGoogle Scholar
  124. Lluch-Belda DR, Schartzlose R, Serra R, Parrish H, Kawasaki T, Hedgecock D, Crawford RJM (1992) Sardine and anchovy regime fluctuations of abundance in four regions of the world oceans: a workshop report. Fish Oceanogr 1:339–347CrossRefGoogle Scholar
  125. Lusseau SM, Hatfield EC, Rasmussen J, Gallego A, Heath MR (2009) Overwinter survival of larval herring in the northern North Sea related to food intake. ICES C M T 09Google Scholar
  126. MacKenzie K (1987) Relationships between the herring, Clupea harengus L and its parasites. Adv Mar Biol 24:263–319CrossRefGoogle Scholar
  127. MacKenzie BR, Köster FW (2004) Fish production and climate: sprat in the Baltic Sea. Ecology 85:784–794CrossRefGoogle Scholar
  128. Magnuson JJ, Meisner JD, Hill DK (1990) Potential changes in the thermal habitat of Great-Lakes fish after global climate warming. Trans Am Fish Soc 119:254–264CrossRefGoogle Scholar
  129. Marjomäki TJ (2004) Analysis of the spawning stock-recruitment relationship of vendace (Coregonus albula (L.)) with evaluation of alternative models, additional variables, biases and errors. Ecol Freshw Fish 13:46–60CrossRefGoogle Scholar
  130. Marjomäki TJ, Auvinen H, Helminen H, Huusko A, Sarvala J, Valkeajärvi P, Vijanen M, Karjalainen J (2004) Spatial synchrony in the inter-annual population variation of vendace (Coregonus albula (L.)) in Finnish lakes. Ann Zool Fenn 41:225–240Google Scholar
  131. McQuinn IH (1997a) Metapopulations and the Atlantic herring. Rev Fish Biol Fish 7:297–329CrossRefGoogle Scholar
  132. McQuinn IH (1997b) Year-class twinning in sympatric seasonal spawning populations of Atlantic herring, Clupea harengus. Fish Bull 95:126–136Google Scholar
  133. Mehner T (2000) Influence of spring water warming on predation rate of underyearling fish on Daphnia—a deterministic simulation approach. Freshw Biol 45:253–265CrossRefGoogle Scholar
  134. Mehner T, Kasprzak P (2011) Partial diel vertical migrations in pelagic fish. J Anim Ecol 80:761–770CrossRefGoogle Scholar
  135. Mehner T, Thiel R (1999) A review of predation impact by 0 + fish on zooplankton in fresh and brackish waters of the temperate Northern hemisphere. Env Biol Fish 56:169–181CrossRefGoogle Scholar
  136. Mehner T, Hölker F, Kasprzak P (2005) Spatial and temporal heterogeneity of trophic variables in a deep lake as reflected by repeated singular samplings. Oikos 108:401–409CrossRefGoogle Scholar
  137. Mehner T, Holmgren K, Lauridsen TL, Jeppesen E, Diekmann M (2007a) Lake depth and geographical position modify lake fish assemblages of the European ‘Central Plains’ ecoregion. Freshw Biol 52:2285–2297CrossRefGoogle Scholar
  138. Mehner T, Kasprzak P, Hölker F (2007b) Exploring ultimate hypotheses to predict diel vertical migrations in coregonid fish. Can J Fish Aquat Sci 64:874–886CrossRefGoogle Scholar
  139. Mehner T, Pohlmann K, Elkin C, Monaghan MT, Freyhof J (2009) Genetic mixing from enhancement stocking in commercially exploited vendace populations. J Appl Ecol 46:1340–1349Google Scholar
  140. Mehner T, Busch S, Helland IP, Emmrich M, Freyhof J (2010a) Temperature-related nocturnal vertical segregation of coexisting coregonids. Ecol Freshw Fish 19:408–419CrossRefGoogle Scholar
  141. Mehner T, Pohlmann K, Elkin C, Monaghan MT, Nitz B, Freyhof J (2010b) Genetic population structure of sympatric and allopatric populations of Baltic ciscoes (Coregonus albula complex, Teleostei, Coregonidae). BMC Evolut Biol 10:85Google Scholar
  142. Mehner T, Emmrich M, Kasprzak P (2011a) Discrete thermal windows cause opposite response of sympatric cold-water fish species to annual temperature variability. Ecosphere 2(9):104CrossRefGoogle Scholar
  143. Mehner T, Freyhof J, Reichard M (2011b) Summary and perspective on evolutionary ecology of fishes. Evol Ecol 25:547–556CrossRefGoogle Scholar
  144. Mehner T, Schiller S, Staaks G, Ohlberger J (2011c) Cyclic temperatures influence growth efficiency and biochemical body composition of vertically migrating fish. Freshw Biol 56:1554–1566CrossRefGoogle Scholar
  145. Melvin GD, Stephenson RL, Power MJ (2009) Oscillating reproductive strategies of herring in the western Atlantic in response to changing environmental conditions. ICES J Mar Sci 66:1784–1792CrossRefGoogle Scholar
  146. Messieh SN (1975) Maturation and spawning of Atlantic herring (Clupea harengus harengus) in Southern Gulf of St Lawrence. J Fish Res Bd Can 32:66–68CrossRefGoogle Scholar
  147. Messieh SN (1988) Spawning of the Atlantic herring in the Gulf of St. Lawrence. Am Fish Soc Symp 5:31–48Google Scholar
  148. Möllmann C, Kornilovs G, Sidrevics L (2000) Long-term dynamics of main mesozooplankton species in the central Baltic Sea. J Plankt Res 22:2015–2038CrossRefGoogle Scholar
  149. Möllmann C, Kornilovs G, Fetter M, Köster FW (2005) Climate, zooplankton, and pelagic fish growth in the central Baltic Sea. ICES J Mar Sci 62:1270–1280CrossRefGoogle Scholar
  150. Muir AM, Vecsei P, Reist JD (2011) A field guide to the taxonomy of ciscoes in Great Slave Lake, Northwest Territories, Canada. Great Lakes Fish. Comm. Misc. Publ. 2011-02, Ann ArborGoogle Scholar
  151. Munk P, Kiorboe T, Christensen V (1989) Vertical migrations of herring, Clupea harengus, larvae in relation to light and prey distribution. Env Biol Fish 26:87–96CrossRefGoogle Scholar
  152. Nash RDM, Dickey-Collas M (2005) The influence of life history dynamics and environment on the determination of year class strength in North Sea herring (Clupea harengus L.). Fish Oceanogr 14:279–291CrossRefGoogle Scholar
  153. Nilsson LAF, Thygesen UH, Lundgren B, Nielsen BF, Nielsen JR, Beyer JE (2003) Vertical migration and dispersion of sprat (Sprattus sprattus) and herring (Clupea harengus) schools at dusk in the Baltic Sea. Aquat Liv Res 16:317–324CrossRefGoogle Scholar
  154. Northcote TG, Hammar J (2006) Feeding ecology of Coregonus albula and Osmerus eperlanus in the limnetic waters of Lake Mälaren, Sweden. Bor Env Res 11:229–246Google Scholar
  155. Nyberg P, Bergstrand E, Degerman E, Enderlein O (2001) Recruitment of pelagic fish in an unstable climate: Studies in Sweden’s four largest lakes. Ambio 30:559–564Google Scholar
  156. Ohlberger J, Mehner T, Staaks G, Hölker F (2008a) Is ecological segregation in a sympatric species pair of coregonines supported by divergent feeding efficiencies? Can J Fish Aquat Sci 65:2105–2113CrossRefGoogle Scholar
  157. Ohlberger J, Mehner T, Staaks G, Hölker F (2008b) Temperature-related physiological adaptations promote ecological divergence in a sympatric species pair of temperate freshwater fish, Coregonus spp. Funct Ecol 22:501–508CrossRefGoogle Scholar
  158. Ohlberger J, Staaks G, Petzoldt T, Mehner T, Hölker F (2008c) Physiological specialization by thermal adaptation drives ecological divergence in a sympatric fish species pair. Evol Ecol Res 10:1173–1185Google Scholar
  159. Ohlberger J, Mehner T, Staaks G, Hölker F (2012) Intraspecific temperature dependence of the scaling of metabolic rate with body mass in fishes and its ecological implications. Oikos 121:245–251CrossRefGoogle Scholar
  160. Orlowski A (2005) Experimental verification of the acoustic characteristics of the clupeoid diel cycle in the Baltic. ICES J Mar Sci 62:1180–1190CrossRefGoogle Scholar
  161. Østbye K, Bernatchez L, Naesje TF, Himberg KJM, Hindar K (2005) Evolutionary history of the European whitefish Coregonus lavaretus (L.) species complex as inferred from mtDNA phylogeography and gill-raker numbers. Mol Ecol 14:4371–4387CrossRefGoogle Scholar
  162. Østbye K, Amundsen PA, Bernatchez L, Klemetsen A, Knudsen R, Kristoffersen R, Naesje TF, Hindar K (2006) Parallel evolution of ecomorphological traits in the European whitefish Coregonus lavaretus (L.) species complex during postglacial times. Mol Ecol 15:3983–4001CrossRefGoogle Scholar
  163. Österblom H, Casini M, Olsson O, Bignert A (2006) Fish, seabirds and trophic cascades in the Baltic Sea. Mar Ecol Progr Ser 323:233–238CrossRefGoogle Scholar
  164. Parmanne R, Rechlin O, Sjöstrand B (1994) Status and future of herring and sprat stocks in the Baltic Sea. Dana 10:29–59Google Scholar
  165. Peck MA, Kuhn W, Hinrichsen HH, Pohlmann T (2009) Inter-annual and inter-specific differences in the drift of fish eggs and yolksac larvae in the North Sea: a biophysical modeling approach. Sci Mar 73:23–36Google Scholar
  166. Peck MA, Baumann H, Bernreuther M, Clemmesen C, Herrmann J-P, Huwer B, Kanstinger P, Petereit C, Temming A, Voss R (2012) The ecophysiology of Sprattus sprattus in the Baltic and North Seas. Progr Oceanogr (in press)Google Scholar
  167. Petereit C, Haslob H, Kraus G, Clemmesen C (2008) The influence of temperature on the development of Baltic Sea sprat (Sprattus sprattus) eggs and yolk sac larvae. Mar Biol 154:295–306CrossRefGoogle Scholar
  168. Petereit C, Hinrichsen HH, Voss R, Kraus G, Freese M, Clemmesen C (2009) The influence of different salinity conditions on egg buoyancy and development and yolk sac larval survival and morphometric traits of Baltic Sea sprat (Sprattus sprattus balticus Schneider). Sci Mar 73:59–72Google Scholar
  169. Politov DV, Bickham JW, Patton JC (2004) Molecular phylogeography of Palearctic and Nearctic ciscoes. Ann Zool Fenn 41:13–23Google Scholar
  170. Pörtner HO, Peck MA (2010) Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. J Fish Biol 77:1745–1779CrossRefGoogle Scholar
  171. Pravdin IF (1936) On the Ladoga Lake cisco (Coregonus albula sip. ladogae) and the Onega Kilets cisco (Coregonus albula sip. kilez Mich.). Izvestiia Vniorkh 21:251–267Google Scholar
  172. Puebla O (2009) Ecological speciation in marine v. freshwater fishes. J Fish Biol 75:960–996CrossRefGoogle Scholar
  173. Pulkkinen K, Valtonen ET (1999) Accumulation of plerocercoids of Triaenophorus crassus in the second intermediate host Coregonus lavaretus and their effect on growth of the host. J Fish Biol 55:115–126Google Scholar
  174. Pulkkinen K, Valtonen ET, Niemi A, Poikola K (1999) The influence of food competition and host specificity on the transmission of Triaenophorus crassus (Cestoda) and Cystidicola farionis (Nematoda) to Coregonus lavaretus and Coregonus albula (Pisces : Coregonidae) in Finland. Int J Parasitol 29:1753–1763CrossRefGoogle Scholar
  175. Reed KM, Dorschner MO, Todd TN, Phillips RB (1998) Sequence analysis of the mitochondrial DNA control region of ciscoes (genus Coregonus): taxonomic implications for the Great Lakes species flock. Mol Ecol 7:1091–1096CrossRefGoogle Scholar
  176. Reid RN, Cargnelli LM, Griesbach SJ, Packer DB, Johnson DJ, Zetlin CA, Morse WW, Berrien PL (1996) Atlantic herring, Clupea harengus, life history and habitat characteristics. NOAA Tech Memo NMFS-NE-126:1–48Google Scholar
  177. Richardson DE, Hare JA, Fogarty MJ, Link JS (2011) Role of egg predation by haddock in the decline of an Atlantic herring population. PNAS 108:13606–13611CrossRefGoogle Scholar
  178. Rosenthal H (1967) Parasites in larvae of herring (Clupea harengus L) fed with wild plankton. Mar Biol 1:10–15CrossRefGoogle Scholar
  179. Rudstam LG, Lathrop RC, Carpenter SR (1993) The rise and fall of a dominant planktivore: direct and indirect effects on zooplankton. Ecology 74:303–319CrossRefGoogle Scholar
  180. Ruzzante DE, Mariani S, Bekkevold D, Andre C, Mosegaard H, Clausen LAW, Dahlgren TG, Hutchinson WF, Hatfield EMC, Torstensen E, Brigham J, Simmonds EJ, Laikre L, Larsson LC, Stet RJM, Ryman N, Carvalho GR (2006) Biocomplexity in a highly migratory pelagic marine fish, Atlantic herring. Proc R Soc B 273:1459–1464CrossRefGoogle Scholar
  181. Safford SE, Booke H (1992) Lack of biochemical, genetic, and morphometric evidence for discrete stock of Northwest Atlantic herring, Clupea harengus harengus. Fish Bull US 90:203–210Google Scholar
  182. Salonen E (2004) Estimation of vendace year-class strength with different methods in the subarctic lake Inari. Ann Zool Fenn 41:249–254Google Scholar
  183. Sandlund OT (1992) Differences in the ecology of two vendace populations separated in 1895. Nord J Freshw Res 67:52–60Google Scholar
  184. Scharf J, Krappe M, Koschel R, Waterstraat A (2008) Feeding of European cisco (Coregonus albula and C.lucinensis) on the glacial relict crustacean Mysis relicta in Lake Breiter Luzin (Germany). Limnologica 38:147–158CrossRefGoogle Scholar
  185. Schmidt SN, Harvey CJ, Vander Zanden MJ (2011) Historical and contemporary trophic niche partitioning among Laurentian Great Lakes coregonines. Ecol Appl 21:888–896CrossRefGoogle Scholar
  186. Schultz H (1992) Bestandsgröße, Wachstum und Zooplanktonkonsum der Kleinen Maräne (Coregonus albula) und anderer Fischarten im Arendsee. Limnologica 22:355–373Google Scholar
  187. Schulz M, Freyhof J (2003) Coregonus fontanae, a new spring-spawning cisco from Lake Stechlin, northern Germany (Salmoniformes: Coregonidae). Ichthyol Explor Freshw 14:209–216Google Scholar
  188. Schulz M, Freyhof J, Saint-Laurent R, Østbye K, Mehner T, Bernatchez L (2006) Evidence for independent origin of two spring-spawning ciscoes in Germany (Salmoniformes: Coregonidae). J Fish Biol 68 (suppl A):119–135Google Scholar
  189. Scott WB, Crossman EJ (1973) Freshwater fishes of Canada. Fisheries Research Board of Canada, OttawaGoogle Scholar
  190. Sinclair M (1988) Marine populations: an essay on population regulation and speciation. University of Washington Press, SeattleGoogle Scholar
  191. Siwertsson AS, Knudsen R, Kahilainen KK, Praebel K, Primicerio R, Amundsen PA (2010) Sympatric diversification as influenced by ecological opportunity and historical contingency in a young species lineage of whitefish. Evol Ecol Res 12:929–947Google Scholar
  192. Skaret G, Nottestad L, Ferno A, Johannessen A, Axelsen BE (2003) Spawning of herring: day or night, today or tomorrow? Aquat Liv Res 16:299–306CrossRefGoogle Scholar
  193. Sparholt H (1994) Fish species interactions in the Baltic Sea. Dana 10:131–162Google Scholar
  194. Steinhilber M, Nelson JS, Reist JD (2002) A morphological and genetic re-examination of sympatric shortjaw cisco (Coregonus zenithicus) and lake herring (C. artedi) in Barrow Lake, Alberta, Canada. Arch Hydrobiol Spec Issues Adv Limnol 57:463–478Google Scholar
  195. Stephenson RL, Power MJ (1988) Semidiel vertical movements in Atlantic herring Clupea harengus larvae—a mechanism for larval retention. Mar Ecol Progr Ser 50:3–11CrossRefGoogle Scholar
  196. Stephenson RL, Melvin GD, Power MJ (2009) Population integrity and connectivity in Northwest Atlantic herring: a review of assumptions and evidence. ICES J Mar Sci 66:1733–1739CrossRefGoogle Scholar
  197. Stepputtis D (2006) Distribution patterns of Baltic sprat (Sprattus sprattus L.)—causes and consequences. University of Kiel, PhD thesis, KielGoogle Scholar
  198. Stockwell JD, Ebener MP, Black JA, Gorman OT, Hrabik TR, Kinnunen RE, Mattes WP, Oyadomari JK, Schram ST, Schreiner DR, Seider MJ, Sitar SP, Yule DL (2009) A synthesis of cisco recovery in Lake Superior: Implications for native fish rehabilitation in the Laurentian Great Lakes. N Am J Fish Man 29:626–652CrossRefGoogle Scholar
  199. Stockwell JD, Hrabik TR, Jensen OP, Yule DL, Balge M (2010) Empirical evaluation of predator-driven diel vertical migration in Lake Superior. Can J Fish Aquat Sci 67:473–485CrossRefGoogle Scholar
  200. Svärdson G (1979) Speciation of the Scandinavian Coregonus. Reports of the Institute of Freshwater Research Drottningholm 57:1–95Google Scholar
  201. Tapaninen M, Marjomäki TJ, Keskinen T (1998) The seasonal final temperature preferenda of immature vendace, Coregonus albula (L.). Arch Hydrobiol Spec Issues Adv Limnol 50:131–141Google Scholar
  202. Thiel R, Potter IC (2001) The ichthyofaunal composition of the Elbe Estuary: an analysis in space and time. Mar Biol 138:603–616CrossRefGoogle Scholar
  203. Thienemann A (1933) Coregonus albula lucinensis, eine Tiefenform der Kleinen Maräne aus einem norddeutschen See. Zugleich ein Beitrag zur Rassenbildung bei Coregonus albula L. Z Morph Ökol Tiere 27:654–683CrossRefGoogle Scholar
  204. Todd TN, Smith GR (1992) A review of differentiation in Great Lakes ciscoes. Pol Arch Hydrobiol 39:261–267Google Scholar
  205. Tolonen A, Karlsbakk E (2003) The parasite fauna of the Norwegian spring spawning herring (Clupea harengus L.). ICES J Mar Sci 60:77–84CrossRefGoogle Scholar
  206. Tourre YM, Lluch-Cota SE, White AB (2007) Global multi-decadal ocean climate and small-pelagic fish population. Environ Res Lett 2:3CrossRefGoogle Scholar
  207. Turgeon J, Bernatchez L (2003) Reticulate evolution and phenotypic diversity in North American ciscoes, Coregonus ssp (Teleostei : Salmonidae): implications for the conservation of an evolutionary legacy. Cons Gen 4:67–81CrossRefGoogle Scholar
  208. Turgeon J, Estoup A, Bernatchez L (1999) Species flock in the North American Great Lakes: Molecular ecology of Lake Nipigon Ciscoes (Teleostei: Coregonidae: Coregonus). Evolution 53:1857–1871CrossRefGoogle Scholar
  209. Tyrrell MC, Link JS, Moustahfid H, Overholtz WJ (2008) Evaluating the effect of predation mortality on forage species population dynamics in the Northeast US continental shelf ecosystem using multispecies virtual population analysis. ICES J Mar Sci 65:1689–1700CrossRefGoogle Scholar
  210. Urpanen O, Huuskonen H, Marjomäki TJ, Karjalainen J (2005) Growth and size-selective mortality of vendace (Coregonus albula (L.)) and whitefish (C. lavaretus L.) larvae. Bor Env Res 10:225–238Google Scholar
  211. Valkeajärvi P, Marjomäki TJ (2004) Perch (Perca fluviatilis) as a factor in recruitment variations of vendace (Coregonus albula) in lake Konnevesi, Finland. Ann Zool Fenn 41:329–338Google Scholar
  212. Valtonen T, Marjomäki TJ (1988) Stock-recruitment relationships in certain Finnish vendace (Coregonus albula L.) populations. Finn Fish Res 9:267–270Google Scholar
  213. van Damme CJG, Dickey-Collas M, Rijnsdorp AD, Kjesbu OS (2009) Fecundity, atresia, and spawning strategies of Atlantic herring (Clupea harengus). Can J Fish Aquat Sci 66:2130–2141CrossRefGoogle Scholar
  214. Vecsei P, Blackie CT, Muir AM, Machtans HM, Reist JD (2011) A preliminary assessment of cisco (Coregonus spp.) diversity in Yellowknife Bay, Great Slave Lake, Northwest Territories. Arch Hydrobiol Spec Issues Adv Limnol 63 (in press)Google Scholar
  215. Viljanen M (1983) Food and food selection of cisco (Coregonus albula L.) in a dysoligotrophic lake. Hydrobiologia 101:129–138CrossRefGoogle Scholar
  216. Viljanen M (1988) Relationship between egg and larval abundance, spawning stock and recruitment in vendace (Coregonus albula L.). Finn Fish Res 9:271–289Google Scholar
  217. Voss R, Schmidt JO, Schnack D (2007) Vertical distribution of Baltic sprat larvae: changes in patterns of diel migration? ICES J Mar Sci 64:956–962CrossRefGoogle Scholar
  218. Vuorinen J, Himberg MKJ, Lankinen P (1981) Genetic differentiation in Coregonus albula (L) (Salmonidae) populations in Finland. Hereditas 94:113–121CrossRefGoogle Scholar
  219. Wahl E, Alheit J (1988) Changes in the distribution and abundance of sprat eggs during spawning season. ICES C M 1988/H:45Google Scholar
  220. Whitehead PJP (1985) Clupeoid fishes of the world. An annotated and illustrated catalogue of the herrings, sardines, pilchards, sprats, shads, anchovies and wolf-herrings. Part 1 Chirocentridae. Clupeidae and Pristigasteridae. FAO Fish Synop 125:1–303Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Thomas Mehner
    • 1
  • Susan Busch
    • 1
  • Catriona Clemmesen
    • 2
  • Ingeborg Palm Helland
    • 1
    • 3
  • Franz Hölker
    • 1
  • Jan Ohlberger
    • 1
    • 4
  • Myron A. Peck
    • 5
  1. 1.Department of Biology and Ecology of FishesLeibniz-Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
  2. 2.Leibniz-Institute of Marine Sciences (IFM-GEOMAR)KielGermany
  3. 3.Norwegian Institute for Nature Research (NINA)Sluppen, TrondheimNorway
  4. 4.Department of Biology, Centre for Ecological and Evolutionary SynthesisUniversity of OsloBlindern, OsloNorway
  5. 5.Institute of Hydrobiology and Fisheries Science, Center for Earth Systems Research and SustainabilityUniversity of HamburgHamburgGermany

Personalised recommendations