Skip to main content

Molecular prey identification in wild Octopus vulgaris paralarvae

Abstract

The trophic ecology of Octopus vulgaris paralarvae collected in 2008 off the Ría de Vigo, NW Spain (42° 12.80′ N–9° 00.00′ W), was approached by both morphological and molecular methods. External digestion of prey and posterior suction of the liquefied contents by wild O. vulgaris paralarvae made the morphological identification of gut contents impossible. Thus, a PCR-based method using group-specific primers was selected to identify prey consumed by O. vulgaris paralarvae in the pelagic realm. The mitochondrial ribosomal 16S gene region was chosen for designing group-specific primers, which targeted a broad range of crustaceans and fishes but avoided the amplification of predator DNA. These primers successfully amplified DNA of prey by using a semi-nested PCR-based approach and posterior cloning. Homology search and phylogenetic analysis were then conducted with the 20 different operational taxonomic units obtained to identify the putative organisms ingested. The phylogenetic analysis clustered ingested prey into 12 families of crustaceans (11 belonging to the order Decapoda and 1 to the order Euphausiacea) and two families of fishes (Gobiidae and Carangidae). According to the Czekanowski’s Index (CI), the trophic niche breadth of O. vulgaris paralarvae is low (CI = 0.13), which means that these paralarvae are specialist predators at least during the first weeks of their life cycle. It is the first time that natural prey has been identified in O. vulgaris paralarvae collected from the wild, and such knowledge may be critical to increasing the survival of O. vulgaris hatchlings in captivity, a goal that has been actively pursued since the 1960s by aquaculture researchers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723

    Article  Google Scholar 

  2. Altman JS, Nixon M (1970) Use of beaks and radula by Octopus vulgaris in feeding. J Zool Lond 161:25–38

    Article  Google Scholar 

  3. Andrews PLR, Tansey EM (1983) The digestive tract of Octopus vulgaris: the anatomy, physiology and pharmacology of the upper tract. J Mar Biol Assoc UK 63:109–135

    Article  CAS  Google Scholar 

  4. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Rapp BA, Wheeler DL (2002) GenBank. Nucl Acids Res 30:17–20

    Article  CAS  Google Scholar 

  5. Blankenship LE, Yayanos AA (2005) Universal primers and PCR of gut contents to study marine invertebrate diets. Mol Ecol 14:891–899

    Article  CAS  Google Scholar 

  6. Boucher-Rodoni R, Boucaud-Camou E, Mangold K (1987) Feeding and digestion. In: Boyle PR (ed) Cephalopod life cycles, comparative reviews, vol 2. Academic Press, London, pp 85–108

    Google Scholar 

  7. Boyle PR, Grisley MS, Robertson G (1986) Crustacea in the diet of Eledone cirrhosa (Mollusca: Cephalopoda) determined by serological methods. J Mar Biol Assoc UK 66:867–879

    Article  Google Scholar 

  8. Braga E, Zardoya R, Meyer A, Yen J (1999) Mitochondrial and nuclear rRNA based copepod phylogeny with emphasis on the Euchaetidae (Calanoida). Mar Biol 133:79–90

    Article  CAS  Google Scholar 

  9. Braley M, Goldsworthy S, Page B, Steer M, Austin JJ (2010) Assessing morphological and DNA-based diet analysis techniques in a generalist predator, the arrow squid Nototodarus gouldi. Mol Eco Res 10:466–474

    Article  CAS  Google Scholar 

  10. Casper R, Jarman S, Gales N, Hindell M (2007) Combining DNA and morphological analyses of faecal samples improves insight into trophic interactions: a case study using a generalist predator. Mar Biol 152:815–825

    Article  Google Scholar 

  11. Chen DS, VanDykhuizen G, Hodge J, Gilly WF (1996) Ontogeny of copepod predation in juvenile squid (Loligo opalescens). Biol Bull 190:69–81

    Article  CAS  Google Scholar 

  12. Deagle BE, Jarman SN, Pemberton D, Gales NJ (2005) Genetic screening for prey in the gut contents from a giant squid (Architeuthis sp). J Hered 96:417–423

    Article  CAS  Google Scholar 

  13. Deagle BE, Gales NJ, Evans K, Jarman SN, Robinson S, Trebilco R, Hindell M (2007) Studying seabird diet through genetic analysis of faeces: a case study on macaroni penguins (Eudyptes chrysolophus). PLoS ONE 2:e831

    Article  Google Scholar 

  14. Deagle BE, Kirkwood R, Jarman SN (2009) Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces. Mol Ecol 18:2022–2038

    Article  CAS  Google Scholar 

  15. Deagle B, Chiaradia A, McInnes J, Jarman S (2010) Pyrosequencing faecal DNA to determine diet of little penguins: is what goes in what comes out? Cons Genet 11:2039–2048

    Article  Google Scholar 

  16. Feinsinger P, Spears EE, Poole RW (1981) A simple measure of niche breadth. Ecology 62:27–32

    Article  Google Scholar 

  17. González AF, Otero J, Guerra A, Prego R, Rocha FJ, Dale AW (2005) Distribution of common octopus and common squid paralarvae in a wind-driven upwelling area (Ría de Vigo, northwestern Spain). J Plankton Res 27:271–277

    Article  Google Scholar 

  18. Guerra A (1978) Sobre la alimentación y el comportamiento alimentario de Octopus vulgaris. Inv Pesq 42:351–364

    Google Scholar 

  19. Guerra A, Nixon M (1987) Crabs and mollusc shells drilling by Octopus vulgaris (Mollusca: Cephalopoda) in the Ría de Vigo (NW Spain). J Zool 211:515–523

    Article  Google Scholar 

  20. Hasegawa M, Kishino H, Yano T (1985) Dating the human-ape split by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    Article  CAS  Google Scholar 

  21. Hernández-García V, Martín AY, Castro JJ (2000) Evidence of external digestion of crustaceans in Octopus vulgaris paralarvae. J Mar Biol Assoc UK 80:559–560

    Article  Google Scholar 

  22. Iglesias J, Fuentes L, Sánchez J, Otero JJ, Moxica C, Lago MJ (2006) First feeding of Octopus vulgaris Cuvier 1797 paralarvae using Artemia: Effect of prey size, prey density and feeding frequency. Aquaculture 261:817–822

    Article  Google Scholar 

  23. Iglesias J, Sánchez FJ, Bersano JGF, Carrasco JF, Dhont J, Fuentes L, Linares F, Muñoz JL, Okumura S, Roo J, van der Meeren T, Vidal EAG, Villanueva R (2007) Rearing of Octopus vulgaris paralarvae: present status, bottlenecks and trends. Aquaculture 266:1–15

    Article  Google Scholar 

  24. Jarman S (2004) AMPLICON: software for designing PCR primers on aligned DNA sequences. Bioinformatics 20:1644–1645

    Article  CAS  Google Scholar 

  25. Jarman S, Deagle B, Gales NJ (2004) Group specific polymerase chain reaction for DNA-based analysis of species diversity and identity in dietary samples. Mol Ecol 13:1313–1322

    Article  CAS  Google Scholar 

  26. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucl Acids Res 30:3059–3066

    Article  CAS  Google Scholar 

  27. King RA, Read DS, Traugott M, Symondson WOC (2008) Molecular analysis of predation: a review of best practice for best DNA-based approaches. Mol Ecol 17:947–963

    Article  CAS  Google Scholar 

  28. Mather JA (1991) Foraging, feeding and prey remains in middens of juvenile Octopus vulgaris (Mollusca: Cephalopoda). J Zool Lond 224:27–39

    Article  Google Scholar 

  29. Nigmatullin CM, Ostapenko AA (1976) Feeding of Octopus vulgaris Lam. from the northwest Africa coast. ICES CM 1–15

  30. Nixon M (1984) Is there external digestion by Octopus? J Zool Lond 202:441–447

    Article  Google Scholar 

  31. Nixon M (1985) Capture of prey, diet and feeding of Sepia officinalis and Octopus vulgaris (Mollusca: Cephalopoda) from hatchling to adult. Vie Milieu 35:255–261

    Google Scholar 

  32. Nixon M (1987) Cephalopods diet. In: Boyle PR (ed) Cephalopod life cycles, comparative reviews, vol 2. Academic Press, London, pp 201–219

    Google Scholar 

  33. Otero J, Álvarez-Salgado XA, González AF, Gilcoto M, Guerra A (2009) Influence of high-frequency coastal upwelling events on Octopus vulgaris larval dynamics in the NW Iberian shelf. Mar Ecol Prog Ser 386:123–132

    Article  Google Scholar 

  34. Parra G, Villanueva R, Yufera M (2000) Respiration rates in late eggs and early hatchlings of the common octopus, Octopus vulgaris. J Mar Biol Ass UK 80:557–558

    Article  Google Scholar 

  35. Passarella KC, Hopkins TL (1991) Species composition and food habits of the micronektonic cephalopod assemblage in the eastern Gulf of Mexico. Bull Mar Sci 49:638–659

    Google Scholar 

  36. Posada D (2008) jModelTest: Phylogenetic Model Averaging. Mol Biol Evol 25:1253–1256

    Article  CAS  Google Scholar 

  37. Rasero M, González AF, Castro BG, Guerra A (1996) Predatory relationships of two sympatric ommastrephids species Todaropsis eblanae and Illex coindetii (Mollusca, Cephalopoda) off Galician Waters (NW Spain). J Mar Biol Assoc UK 76:73–87

    Article  Google Scholar 

  38. Rodhouse PG, Nigmatullin CM (1996) Role as consumers. Phil Trans R Soc Lond B 351:1003–1022

    Article  Google Scholar 

  39. Roura A, González AF, Pascual S, Guerra A (2010) A molecular approach to identifying the prey of cephalopod paralarvae. ICES J Mar Sci 67:1408–1412

    Google Scholar 

  40. Sheppard SK, Harwood JD (2005) Advances in molecular ecology: tracking trophic links through predator-prey foodwebs. Funct Ecol 19:751–762

    Article  Google Scholar 

  41. Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701

    CAS  Google Scholar 

  42. Smale MJ, Buchan PR (1981) Biology of Octopus vulgaris off the east coast of South Africa. Mar Biol 65:1–12

    Article  Google Scholar 

  43. Suzuki N, Murakami K, Takeyama H, Chow S (2006) Molecular attempt to identify prey organisms of lobster phyllosoma larvae. Fish Sci 72:342–349

    Article  CAS  Google Scholar 

  44. Suzuki N, Hoshino K, Murakami K, Takeyama H, Chow S (2008) Molecular diet analysis of phyllosoma larvae of the japanese spiny lobster Panulirus japonicus (Decapoda: Crustacea). Mar Biotech 10:49–55

    Article  CAS  Google Scholar 

  45. Sweeney MJ, Roper CFE, Mangold K, Clarke MR, Boletzky SV (1992) ‘Larval’ and juvenile cephalopods: a manual for their identification, no. 531. Smithsonian Contributions to Zoology, Washington DC

  46. Symondson W (2002) Molecular identification of prey in predator diets. Mol Ecol 11:627–641

    Article  CAS  Google Scholar 

  47. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  Google Scholar 

  48. Vecchione M (1991) A method for examining the structure and contents of the digestive tract in paralarvae squids. Bull Mar Sci 49:300–308

    Google Scholar 

  49. Venter JD, Wyngaardt S, Verschoor JA (1999) Detection of zooplankton prey in squid paralarvae with Immunoassay. J Immunoassay 20:127–149

    Article  CAS  Google Scholar 

  50. Vidal EAG, Haimovici M (1998) Feeding and the possible role of the proboscis and mucus cover in the ingestion of microorganisms by rhynchoteuthion paralarvae (Cephalopoda: Ommastrephidae). Bull Mar Sci 63:305–316

    Google Scholar 

  51. Villanueva R (1995) Experimental rearing and growth of planktonic Octopus vulgaris from hatching to settlement. Can J Fish Aquat Sci 52:2639–2650

    Article  Google Scholar 

  52. Villanueva R, Norman M (2008) Biology of the planktonic stages of benthic octopuses. Oceanogr Mar Biol Annu Rev 46:105–202

    Article  Google Scholar 

  53. Yen J, Fields DM (1992) Escape responses of Acartia hudsonica (Copepoda) nauplii from the flow field of Temora longicornis (Copepoda). Arch Hydrobiol Beih 36:123–134

    Google Scholar 

Download references

Acknowledgments

We acknowledge the comments and suggestions made by S. Jarman, B. Deagle and A. Passmore, during the onset of this work. We are indebted to Adam Smolenski (University of Tasmania) and Mariana Rivas (IIM, CSIC Vigo) for their valuable contribution to this research. We thank David Posada and Mateus Patricio (University of Vigo) for their advice to perform the phylogenetic analyses. We also thank the crew of the R/V “Mytilus” (IIM, CSIC Vigo) for their technical assistance in collecting the zooplankton samples. This study was supported by the project CAIBEX (Spanish Ministry of Innovation and Science CTM2007-66408-C02), LARECO (CTM2011-25929) and FEDER Funds and the first author by a JAE-pre grant (CSIC) that is cofinanced by Fondo Social Europeo (ESF).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Álvaro Roura.

Additional information

Communicated by T. Reusch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 98 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Roura, Á., González, Á.F., Redd, K. et al. Molecular prey identification in wild Octopus vulgaris paralarvae. Mar Biol 159, 1335–1345 (2012). https://doi.org/10.1007/s00227-012-1914-9

Download citation

Keywords

  • Prey Species
  • Operational Taxonomic Unit
  • Hermit Crab
  • Specialist Predator
  • Pelagic Ecosystem