Skip to main content

Advertisement

Log in

The Baltic Sea spring phytoplankton bloom in a changing climate: an experimental approach

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The response of the Baltic Sea spring bloom was studied in mesocosm experiments, where temperatures were elevated up to 6°C above the present-day sea surface temperature of the spring bloom season. Four of the seven experiments were carried out at different light levels (32–202 Wh m−2 at the start of the experiments) in the different experimental years. In one further experiment, the factors light and temperature were crossed, and in one experiment, the factors density of overwintering zooplankton and temperature were crossed. Overall, there was a slight temporal acceleration of the phytoplankton spring bloom, a decline of peak biomass and a decline of mean cell size with warming. The temperature influence on phytoplankton bloom timing, biomass and size structure was qualitatively highly robust across experiments. The dependence of timing, biomass, and size structure on initial conditions was tested by multiple regression analysis of the y-temperature regressions with the candidate independent variables initial light, initial phytoplankton biomass, initial microzooplankton biomass, and initial mesozooplankton (=copepod) biomass. The bloom timing predicted for mean temperatures (5.28°C) depended on light. The peak biomass showed a strong positive dependence on light and a weaker negative dependence on initial copepod density. Mean phytoplankton cell size predicted for the mean temperature responded positively to light and negatively to copepod density. The anticipated mismatch between phytoplankton supply and food demand by newly hatched copepod nauplii occurred only under the combination of low light and warm temperatures. The analysis presented here confirms earlier conclusions about temperature responses that are based on subsets of our experimental series. However, only the comprehensive analysis across all experiments highlights the importance of the factor light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aberle N, Lengfellner K, Sommer U (2007) Spring bloom succession, grazing impact and herbivore selectivity of ciliate communities in response to winter warming. Oecologia 150:668–681

    Article  CAS  Google Scholar 

  • Atkinson D, Ciotti BJ, Montagnes DJS (2003) Protist decrease in size linearly with temperature: ca. 2.5% °C. Proc R Soc Lond B 270:2605–2611

    Article  Google Scholar 

  • Boyce DG, Lewis MR, Worm B (2010) Global phytoplankton decline over the past century. Nature 466:591–596

    Article  CAS  Google Scholar 

  • Brock TD (1981) Calculating solar radiation for ecological models. Ecol Model 14:1–19

    Article  Google Scholar 

  • Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22:357–366

    Article  Google Scholar 

  • Cushing DH (1990) Plankton production and year-class strength in fish populations—an update of the match-mismatch hypothesis. Adv Mar Biol 26:249–293

    Article  Google Scholar 

  • Daufresne M, Lengfellner K, Sommer U (2009) Global warming benefits the small in aquatic ecosystems. Proc Natl Acad Sci 106:12788–12793

    Article  CAS  Google Scholar 

  • Edwards M, Beaugrand G, Reid PC, Rowden A, Jones MB (2002) Ocean climate anomalies and the ecology of the North Sea. Mar Ecol Prog Ser 239:1–10

    Article  Google Scholar 

  • Eppley RW (1972) Temperature and phytoplankton growth in the sea. Fish Bull 70:1063–1085

    Google Scholar 

  • Gaedke U, Ruhenstroth-Bauer M, Wiegand I, Tirok K, Aberle N, Breithaupt P, Lengfellner K, Wohlers J, Sommer U (2010) Biotic interactions may overrule direct climate effects on spring phytoplankton dynamics. Glob Change Biol 16:1122–1136

    Article  Google Scholar 

  • Gardner JL, Peters A, Kearney MR, Joseph L, Heinsohn R (2011) Declining body size: a third universal response to warming? Trends Ecol Evol 26:285–291

    Article  Google Scholar 

  • Gerten D, Adrian R (2001) Differences in the persistency of the North Atlantic oscillation signal among lakes. Limnol Oceanogr 46:448–455

    Article  Google Scholar 

  • Hancke K, Glud RN (2004) Temperature effects on respiration and photosynthesis in three diatom-dominated benthic communities. Aquat Microb Ecol 37:265–281

    Article  Google Scholar 

  • Hillebrand H, Duerselen C-D, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424

    Article  Google Scholar 

  • Hoppe HG, Breithhaupt P, Walther K, Koppe R, Bleck S, Sommer U, Jürgens K (2008) Climate warming in winter affects the coupling between phytoplankton and bacteria during the spring bloom. Aquat Microb Ecol 51:105–115

    Article  Google Scholar 

  • Huisman J, Sommeijer B (2002) Population dynamics of sinking phytoplankton in light-limited environments: simulation techniques and critical parameters. J Sea Res 48:83–96

    Article  Google Scholar 

  • Huisman J, Thi NNP, Karl DM, Sommeijer B (2005) Reduced mixing generates oscillations and chaos in the oceanic deep chlorophyll maximum. Nature 439:322–325

    Article  Google Scholar 

  • Ikeda T, Kanno Y, Ozaki K, Shinada A (2001) Metabolic rate of epipelagic copepods as a function of body mass and temperature. Mar Biol 139:587–596

    Google Scholar 

  • IPCC (International Panel on Climate Change) (2007) Climate change 2007: the physical science basis. UNEP and WHO. Cambridge University Press, Cambridge

  • Isla A, Lengfellner K, Sommer U (2008) Physiological response of the copepod Pseudocalanus sp. in the Baltic Sea at different thermal scenarios. Glob Change Biol 14:895–906

    Article  Google Scholar 

  • Ivleva IV (1980) The dependence of crustacean respiration rate on body mass and habitat temperature. Int Rev Hydrobiol 65:1–47

    Article  Google Scholar 

  • Jacques G (1983) Some ecophysiological aspects of Antarctic phytoplankton. Polar Biol 2:27–33

    Article  Google Scholar 

  • Lewandowska A, Sommer U (2010) Climate change and the spring bloom: a mesocosm study on the influence of light and temperature on phytoplankton and mesozooplankton. Mar Ecol Prog Ser 405:101–111

    Article  CAS  Google Scholar 

  • Lewandowska A, Breithaupt P, Hillebrand H, Hoppe HG, Jürgens K, Sommer U (2011) Responses of primary productivity to increased temperature and phytoplankton diversity. J Sea Res. doi:10.1016/j.seares.2011.10.003

    Google Scholar 

  • Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and of the protist plankton. Limnol Oceanogr 45:569–579

    Article  CAS  Google Scholar 

  • Moran XA, Lopez-Urrutia A, Calvo-Diaz A, Li WKW (2010) Increasing importance of small phytoplankton in a warmer ocean. Glob Change Biol 16:1137–1144

    Article  Google Scholar 

  • Müren U, Berglund J, Samulesson K, Andersson A (2005) Potential effects of elevated sea-water temperature on pelagic food webs. Hydrobiologia 545:153–166

    Article  Google Scholar 

  • O’Connor ML, Piehler MF, Leech DM, Anton A, Bruno JF (2009) Warming and resource availability shift food web structure and metabolism. PLoS Biol 7(8):e1000178. doi:10.1371/journal.pbio.1000178

    Article  Google Scholar 

  • Prosser CL (1973) Comparative animal physiology. Saunders, London

    Google Scholar 

  • Putt M, Stoecker DK (1989) An experimentally determined carbon: volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters. Limnol Oceanogr 34:1097–1103

    Article  Google Scholar 

  • Reynolds CS (1989) Physical determinants of phytoplankton succession. In: Sommer U (ed) Plankton succession. Brock-Springer, Madison, pp 9–56

    Google Scholar 

  • Riley GA (1957) Phytoplankton of the North Central Sargasso Sea. Limnol Oceanogr 2:252–270

    Google Scholar 

  • Ruprecht E, Schröder SS, Ubl S (2002) On the relation between NAO and water vapour transport towards Europe. Meteorol Z 11:395–401

    Article  Google Scholar 

  • Sand-Jensen K, Pedersen NL, Søndergaard M (2007) Bacterial metabolism in small temperate streams under contemporary and future climates. Freshw Biol 52:2340–2353

    Article  Google Scholar 

  • Smetacek V (1999) Diatoms and the ocean carbon cycle. Protist 150:25–32

    Article  CAS  Google Scholar 

  • Sommer U (1996) Plankton ecology: the last two decades of progress. Naturwissenschaften 83:293–301

    Article  CAS  Google Scholar 

  • Sommer U, Lengfellner K (2008) Climate change and the timing, magnitude and composition of the phytoplankton spring bloom. Glob Change Biol 14:1199–1208

    Article  Google Scholar 

  • Sommer U, Lewandowska A (2011) Climate change and the phytoplankton spring bloom: warming and overwintering zooplankton have similar effects on phytoplankton. Glob Change Biol 17:154–162

    Article  Google Scholar 

  • Sommer U, Sommer F (2006) Cladocerans versus copepods: the cause of contrasting top-down controls on freshwater and marine phytoplankton. Oecologia 147:183–194

    Article  Google Scholar 

  • Sommer U, Gliwicz ZM, Lampert W, Duncan A (1986) The PEG-model of seasonal succession of planktonic events in fresh waters. Arch Hydrobiol 106:433–471

    Google Scholar 

  • Sommer U, Aberle N, Engel A, Hansen T, Lengfellner K, Sandow M, Wohlers J, Zöllner U, Riebesell U (2007) An indoor mesocosm system to study the effect of climate change on the late winter and spring succession of Baltic Sea phyto- and zooplankton. Oecologia 150:655–667

    Article  Google Scholar 

  • Stenseth NC, Mysterud A, Ottersen G, Hurrell JW, Chan KS, Lima M (2002) Ecological effects of climate fluctuations. Science 297:1292–1296

    Article  CAS  Google Scholar 

  • Stibor H, Vadstein O, Diehl S, Gelzleichter A, Hansen T, Hantzsche F, Katechakis A, Lippert B, Loeseth K, Peters C, Roederer W, Sandow M, Sundt-Hansen L, Olsen Y (2004) Copepods act as a switch between alternative marine food webs. Ecol Lett 7:321–328

    Article  Google Scholar 

  • Sverdrup H (1953) On conditions for the vernal blooming of phytoplankton. J Cons Explor Mer 18:287–295

    Google Scholar 

  • Tilstone GH, Miguez BM, Figueiras FG, Fermin EG (2000) Diatom dynamics in a coastal ecosystem affected by upwelling: coupling between species succession, circulation and biogeochemical processes. Mar Ecol Prog Ser 205:23–41

    Article  Google Scholar 

  • Tilzer MM, Elbrächter M, Gieskes W, Beese B (1986) Light-temperature interactions in the control of photosynthesis in Antarctic phytoplankton. Polar Biol 5:105–111

    Article  Google Scholar 

  • Tirok K, Gaedke U (2007) The effect of irradiance, vertical mixing and temperature on spring phytoplankton dynamics under climate change: long-term observations and model analysis. Oecologia 150:625–642

    Article  Google Scholar 

  • Visser ME, van Noordwijk AJ, Tinbergen JM, Lessells CM (1998) Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc R Soc Lond Ser B 265:1867–1870

    Article  Google Scholar 

  • Walther GR, Post E, Convey P et al (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  Google Scholar 

  • Wasmund N, Göbel J, von Bodungen B (2008) 100-years-changes in the phytoplankton community of Kiel Bight (Baltic Sea). J Mar Syst 73:300–322

    Article  Google Scholar 

  • Weyhenmeyer GA (2001) Warmer winters: are planktonic populations in Sweden’s largest lake affected? Ambio 30:565–571

    CAS  Google Scholar 

  • Weyhenmeyer GA, Blenckner T, Pettersson K (1999) Changes of the plankton spring outburst related to the North Atlantic oscillation. Limnol Oceanogr 44:1788–1792

    Article  Google Scholar 

  • Wiltshire KH, Manly BFJ (2004) The warming trend at Helgoland Roads, North Sea: phytoplankton response. Helgol Mar Res 58:269–273

    Article  Google Scholar 

  • Wiltshire KH, Malzahn AM, Wirtz K, Greve W, Janisch S, Mangelsdorf P, Manly BFJ, Boersma M (2008) Resilience of North Sea phytoplankton spring bloom dynamics: an analysis of long-term data at Helgoland Roads. Limnol Oceanogr 53:1294–1302

    Article  Google Scholar 

  • Wohlers J, Engel A, Zöllner E, Breithaupt P, Jürgens K, Hoppe HG, Sommer U, Riebesell U (2009) Changes in biogenic carbon flow in response to sea surface warming. Proc Natl Acad Sci 106:7067–7072

    Article  CAS  Google Scholar 

  • Zhang X, Zwiers FW, Hegerl GC, Lambert FH, Gillet NP, Solomon S, Stott PA, Nozawa T (2007) Detection of human influence on twentieth-century precipitation trends. Nature 448:461–465

    Article  CAS  Google Scholar 

Download references

Acknolwedgements

The experiments reported here were funded via the priority program 1162 (“AQUASHIFT”) by Deutsche Forschungsgemeinschaft (DFG). Technical assistance by Thomas Hansen, Cordula Meyer and Bente Gardeler are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Sommer.

Additional information

Communicated by R. Adrian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sommer, U., Aberle, N., Lengfellner, K. et al. The Baltic Sea spring phytoplankton bloom in a changing climate: an experimental approach. Mar Biol 159, 2479–2490 (2012). https://doi.org/10.1007/s00227-012-1897-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-1897-6

Keywords

Navigation