Skip to main content

Low levels of global genetic differentiation and population expansion in the deep-sea teleost Hoplostethus atlanticus revealed by mitochondrial DNA sequences

Abstract

The orange roughy Hoplostethus atlanticus is a well-known commercial species with a global distribution. There is no consensus about levels of connectivity among populations despite a range of techniques having been applied. We used cytochrome c oxidase subunit I (COI) and cytochrome b sequences to study genetic connectivity at a global scale. Pairwise ΦST analyses revealed a lack of significant differentiation among samples from New Zealand, Australia, Namibia, and Chile. However, low but significant differentiation (ΦST = 0.02–0.13, P < 0.05) was found between two Northeast Atlantic sites and all the other sites with COI. AMOVA and the haplotype genealogy confirmed these results. The prevalent lack of genetic differentiation is probably due to active adult dispersal under the stepping-stone model. Demographic analyses suggested the occurrence of two expansion events during the Pleistocene period.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Aboim MA, Menezes GM, Schlitt T, Rogers AD (2005) Genetic structure and history of populations of the deep-sea fish Helicolenus dactylopterus (Delaroche, 1809) inferred from mtDNA sequence analysis. Mol Ecol 14:1343–1354

    Article  CAS  Google Scholar 

  • Baker CS, Perry A, Chambers GK, Smith PJ (1995) Population variation in the mitochondrial cytochrome b gene of the orange roughy Hoplostethus atlanticus and the hoki Macruronus novaezelandiae. Mar Biol 122:503–509

    Article  CAS  Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  Google Scholar 

  • Bermingham E, McCafferty SS, Martin AP (1997) Fish biogeography and molecular clocks: perspectives from the Panamanian isthmus. In: Kocher T, Stepien C (eds) Molecular systematics of fishes. Academic Press, San Diego, pp 113–128

    Chapter  Google Scholar 

  • Boehlert GW, Sasaki T (1988) Pelagic biogeography of the armorhead, Pseudopentaceros wheeleri, and recruitment to isolated seamounts in the North Pacific Ocean. Fish Bull 86:453–465

    Google Scholar 

  • Branch TA (2001) A review of orange roughy Hoplostethus atlanticus fisheries, estimation methods, biology and stock structure. S Afr J Mar Sci 23:181–203

    Article  Google Scholar 

  • Brown WM, George M, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 76:1967–1971

    Article  CAS  Google Scholar 

  • Carlsson J, Shephard S, Coughlan J, Trueman CN, Rogan E, Cross TF (2011) Fine-scale population structure in a deep-sea teleost (orange roughy, Hoplostethus atlanticus). Deep Sea Res I 58:627–636

    Article  CAS  Google Scholar 

  • Clark MR (1996) Biomass estimation of orange roughy: a summary and evaluation of techniques for measuring stock size of a deep-water fish species in New Zealand. J Fish Biol 49(Suppl A):114–131

    Article  Google Scholar 

  • Clark MR, Anderson OF, Francis RIC, Tracey DM (2000) The effects of commercial exploitation on orange roughy (Hoplostethus atlanticus) from the continental slope of the Chatham Rise, New Zealand, from 1979 to 1997. Fish Res 45:217–238

    Article  Google Scholar 

  • Crandall KA, Templeton AR (1993) Empirical test of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction. Genetics 134:959–969

    CAS  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214. doi:10.1186/147-2148-7-214

    Article  Google Scholar 

  • Drummond AJ, Rambaut A, Shapiro B, Pybus OG (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol 22:1185–1192

    Article  CAS  Google Scholar 

  • Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:699–710

    Article  CAS  Google Scholar 

  • Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Heled J, Kearse M, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2010) Geneious v5.1, available from http://www.geneious.com

  • Edmonds JS, Caputi N, Morita M (1991) Stock discrimination by trace-element analysis of otoliths of orange roughy (Hoplostethus atlanticus), a deep-water marine teleost. Aust J Mar Freshw Res 42:383–389

    Article  CAS  Google Scholar 

  • Elliott NG, Ward RD (1992) Enzyme variation in orange roughy, Hoplostethus atlanticus (Teleostei: Trachichthyidae), from Southern Australian and New Zealand waters. Aust J Mar Freshw Res 43:1561–1571

    Article  CAS  Google Scholar 

  • Elliott NG, Haskard K, Koslow JA (1995) Morphometric analyses of orange roughy (Hoplostethus atlanticus) off the continental slope of southern Australia. J Fish Biol 46:202–220

    Article  Google Scholar 

  • Elliott NG, Lowry PS, Grewe PM, Innes BH, Yearsley GK, Ward RD (1998) Genetic evidence for depth- and spatially separated stocks of the deep-water spikey oreo in Australasian waters. J Fish Biol 52:796–816

    Article  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  Google Scholar 

  • Fenton GE, Short SA, Ritz DA (1991) Age determination of orange roughy, Hoplostethus atlanticus (Pisces: Trachichthyidae) using 210Pb: 226Ra disequilibria. Mar Biol 109:197–202

    Article  Google Scholar 

  • Francis RICC, Clark MR (1998) Inferring spawning migrations of orange roughy (Hoplostethus atlanticus) from spawning ogives. Mar Freshw Res 49:103–108

    Article  Google Scholar 

  • Francis RICC, Horn PL (1997) Transition zone in otoliths of orange roughy (Hoplostethus atlanticus) and its relationship to the onset of maturity. Mar Biol 129:681–687

    Article  Google Scholar 

  • Friess C, Sedberry GR (2011) Genetic evidence for a single stock of the deep-sea teleost Beryx decadactylus in the North Atlantic Ocean as inferred from mtDNA control region analysis. J Fish Biol 78:466–478

    Article  CAS  Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    CAS  Google Scholar 

  • Grant WS, Bowen BW (1998) Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. Amer Genet Assoc 89:415–426

    Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate Maximum-Likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  Google Scholar 

  • Han ZQ, Gao TX, Yanagimoto T, Sakurai Y (2008) Deep phylogeographic break among white croacker Pennahia argentata (Sciaenidae, Perciformes) populations in North-Western Pacific. Fisheries Sci 74:770–780

    Article  CAS  Google Scholar 

  • Harpending RC (1994) Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol 66:591–600

    CAS  Google Scholar 

  • Hoarau G, Borsa P (2000) Extensive gene flow within sibling species in the deep-sea fish Beryx splendens. C R Acad Sci III Vie 323:315–325

    Article  CAS  Google Scholar 

  • Horn PL, Tracey DM, Clark MR (1998) Between-area differences in age and length at first maturity of the orange roughy Hoplostethus atlanticus. Mar Biol 132:187–194

    Article  Google Scholar 

  • Imbrie J, Boyle EA, Clemens SC et al (1992) On the structure and origin of major glaciations cycles 1. Linear responses to Milankovitch forcing. Paleoceanography 7:701–738

    Article  Google Scholar 

  • Knutsen H, Jorde PE, Sannaes H, Hoelzel AR, Bergstad OA, Stefanni S, Johansen T, Stenseth NC (2009) Bathymetric barriers promoting genetic structure in the deepwater demersal fish tusk (Brosme brosme). Mol Ecol 18:3151–3162

    Article  Google Scholar 

  • Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196–6200

    Article  CAS  Google Scholar 

  • Koslow JA (1996) Energetic and life-history patterns of deep-sea benthic, benthopelagic and seamount-associated fish. J Fish Biol 49(Suppl A):54–74

    Article  Google Scholar 

  • Koslow JA (1997) Seamounts and the ecology of deep-sea fisheries. Am Sci 85:168–176

    Google Scholar 

  • Labbé J, Arana PM (2001) Alimentación de orange roughy, Hoplostethus atlanticus (Pisces: Trachichthyidae), en el archipiélago de Juan Fernández, Chile. Rev Biol Mar Ocean 36:75–82

    Google Scholar 

  • Larmuseau MHD, Van Houdt JKJ, Guelinckx J, Hellemans B, Volckaert FAM (2009) Distributional and demographic consequences of Pleistocene climate fluctuations for a marine demersal fish in the north-eastern Atlantic. J Biogeogr 36:1138–1151

    Article  Google Scholar 

  • Lester RJG, Sewell KB, Barnes A, Evanks K (1988) Stock discrimination of orange roughy, Hoplostethus atlanticus, by parasite analysis. Mar Biol 99:137–143

    Article  Google Scholar 

  • Librado P, Rozas J (2009) DNAsp v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  Google Scholar 

  • Mace PM, Fenaughty JM, Coburn RP, Doonan IJ (1990) Growth and productivity of orange roughy (Hoplostethus atlanticus) on the north Chatham Rise. N Z J Mar Freshw Res 24:105–119

    Article  Google Scholar 

  • Martin AP, Humphreys R, Palumbi SR (1992) Population genetic structure of the Armorhead, Pseudopentaceros wheeleri, in the North Pacific Ocean: application of the polymerase chain reaction to fisheries problems. Can J Fish Aquat Sci 49:2368–2391

    Google Scholar 

  • McCusker MR, Bentzen P (2010) Positive relationships between genetic diversity and abundance in fishes. Mol Ecol 19:4852–4862

    Article  Google Scholar 

  • Mundy BC, Moser HG (1997) Development of early stages of pelagic armorhead Pseudopentaceros wheeleri with notes on juvenile Ps. richardsoni and larval Histiopterus typus (Pisces, Percoidei, Pentacerotidae). B Mar Sci 61:241–269

    Google Scholar 

  • Nielsen JL, Graziano SL, Seitz AC (2010) Fine-scale population genetic structure in Alaskan Pacific halibut (Hippoglossus stenolepis). Conserv Genet 11:999–1012

    Article  Google Scholar 

  • Oke CS, Crozier RH, Ward RD (2002) Stock structure of Australian populations of orange roughy analysed using microsatellites. Published by James Cook University. Fisheries Research and Development Corporation, James Cook University, La Trobe University and the Commonwealth Scientific and Industrial Research Organization, p 44

  • Palumbi SR, Martin A, Romano S, McMillan WO, Stice L, Grabowski G (1991) The simple fool’s guide to PCR. Department of Zoology, University of Hawaii, Honolulu

    Google Scholar 

  • Pankhurst NW, Conroy AM (1987) Size-fecundity relationships in orange roughy, Hoplostethus atlanticus. N Z J Mar Freshw Res 21:295–300

    Article  Google Scholar 

  • Paulin CD (1979) New Zealand roughies (Pisces: Berycomorphi: Trachichthyidae). N Z J Zool 6:69–76

    Article  Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  CAS  Google Scholar 

  • Rambaut A, Drummond AJ (2007) Tracer v1.4. Available from http://beast.bio.ed.ac.uk/Tracer

  • Rasmussen TL, Oppo DW, Thomsen E, Lehman SJ (2003) Deep sea records from the southeast Labrador Sea: ocean circulation changes and ice-rafting events during the last 160,000 years. Paleoceanography 18(1):1018. doi:10.1029/2001PA000736

    Article  Google Scholar 

  • Rogers AD (1994) The biology of seamounts. Adv Mar Biol 30:305–350

    Article  Google Scholar 

  • Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569

    CAS  Google Scholar 

  • Rogers AD, Morley S, Fitzcharles E, Jarvis K, Belchier M (2006) Genetic structure of Patagonian toothfish (Dissostichus eleginoides) populations on the Patagonian Shelf and Atlantic and Western Indian Ocean sectors of the Southern Ocean. Mar Biol 149:915–924

    Article  Google Scholar 

  • Salzburger W, Ewing GB, von Haeseler A (2011) The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Mol Ecol 20:1952–1963

    Article  Google Scholar 

  • Sedberry GR, Carlin JL, Chapman RW, Eleby B (1996) Population structure in the pan-oceanic wreckfish, Polyprion americanus (Teleostei: Polyprionidae), as indicated by mtDNA variation. J Fish Biol 49(Suppl A):318–329

    Article  Google Scholar 

  • Smith PJ (1986) Genetic similarity between samples of the orange roughy Hoplostethus atlanticus from the Tasman Sea, South-West Pacific Ocean and North-East Atlantic Ocean. Mar Biol 91:173–180

    Article  Google Scholar 

  • Smith PJ, Benson PG (1997) Genetic diversity in orange roughy from the east of New Zealand. Fish Res 31:197–213

    Article  Google Scholar 

  • Smith PJ, McVeagh SM (2000) Allozyme and microsatellite DNA markers of toothfish population structure in the Southern Ocean. J Fish Biol 57:72–83

    Article  CAS  Google Scholar 

  • Smith PJ, McVeagh SM, Ede A (1996) Genetically isolated stocks of orange roughy (Hoplostethus atlanticus) but not hoki (Macruronus novaezelandiae) in the Tasman Sea and Southwest Pacific Ocean around New Zealand. Mar Biol 125:783–793

    Article  Google Scholar 

  • Smith PJ, Benson PG, McVeagh SM (1997) A comparison of three genetic methods for stock discrimination of orange roughy, Hoplostethus atlanticus: allozymes, mitochondrial DNA, and random amplified polymorphic DNA. Fish Bull 95:800–811

    Google Scholar 

  • Smith PJ, McMillan PJ, Bull B, McVeagh SM, Gaffney PM, Chow S (2002a) Genetic and meristic variation in black and smooth oreos in the New Zealand exclusive economic zone. N Z J Mar Freshw Res 36:737–750

    Article  CAS  Google Scholar 

  • Smith PJ, Robertson SG, Horn PL, Bull B, Anderson OF, Stanton BR, Oke CS (2002b) Multiple techniques for determining stock relationships between orange roughy, Hoplostethus atlanticus, fisheries in the eastern Tasman Sea. Fish Res 58:119–140

    Article  Google Scholar 

  • Smolenski AJ, Ovenden JR, White RWG (1993) Evidence of stock separation in southern hemisphere orange roughy (Hoplostethus atlanticus, Trachichthyidae) from restriction-enzyme analysis of mitochondrial DNA. Mar Biol 116:219–230

    Article  CAS  Google Scholar 

  • Stepien CA, Dillon AK, Patterson AK (2000) Population genetics, phylogeography, and systematic of the thornyhead rockfishes (Sebastolobus) along the deep continental slopes of the North Pacific Ocean. Can J Fish Aquat Sci 57:1701–1717

    Article  CAS  Google Scholar 

  • Stockley B, Menezes G, Pinho MR, Rogers AD (2005) Genetic population structure in the black-spot sea bream (Pagellus bogaraveo Brünnich, 1768) from the NE Atlantic. Mar Biol 146:793–804

    Article  CAS  Google Scholar 

  • Tajima F (1989) Statistical-method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  Google Scholar 

  • Tsuchiya M, Talley LD, McCartney MS (1992) An eastern Atlantic section from Iceland southward across the equator. Deep-Sea Res 39:1885–1917

    Article  CAS  Google Scholar 

  • von der Heyden S, Lipinski MR, Matthee CA (2007) Mitochondrial DNA analyses of the Cape hakes reveal an expanding, panmictic population for Merluccius capensis and population structuring for mature fish in Merluccius paradoxus. Mol Phylogenet Evol 42:517–527

    Article  Google Scholar 

  • Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s fish species. Phil Trans R Soc B 360:1847–1857

    Article  CAS  Google Scholar 

  • Ward RD, Hanner R, Hebert PDN (2009) The campaign to DNA barcode all fishes, FISH-BOL. J Fish Biol 74:329–356

    Article  CAS  Google Scholar 

  • Webb T, Bartlein PJ (1992) Global changes during the last 3 million years: climatic controls and biotic responses. Annu Rev Ecol Syst 23:141–173

    Article  Google Scholar 

  • White TA, Stefanni S, Stamford J, Hoelzel AR (2009) Unexpected panmixia in a long-lived, deep-sea fish with well-defined spawning habitat and relatively low fecundity. Mol Ecol 18:2563–2573

    Article  Google Scholar 

  • Xiao Y, Gao T, Zhang Y, Yanagimoto T (2010) Demographic history and population structure of blackfin flounder (Glyptocephalus stelleri) in Japan revealed by mitochondrial control region sequences. Biochem Genet 48:402–417

    Article  CAS  Google Scholar 

  • Yanagimoto T, Kitamura T, Kobayashi T (2008) Population structure of the pelagic armorhead Pseudopentaceros wheeleri, inferred from PCR-RFLP analysis of the mtDNA variation. Nippon Suisan Gakk 74:412–420

    Article  CAS  Google Scholar 

  • Zeldis JR, Grimes PJ, Hart AC (1998) Embryology and early larval development of orange roughy (Hoplostethus atlanticus Collet). N Z J Mar Freshw Res 32:159–174

    Article  Google Scholar 

Download references

Acknowledgments

This work was carried out under a PhD scholarship awarded to A. I. Varela by CONICYT (Comisión Nacional de Investigación Científica y Tecnológica, Gobierno de Chile) and Victoria University of Wellington. We would like to thank to Milan Barbarich and Khush Mistry from Anton’s Seafoods Ltd. and Jim Fitzgerald from Sanford Ltd for their support and assisting with sample collection in Northern New Zealand. We express our gratitude to Dave Banks and the New Zealand Seafood Industry Council Ltd. for their assistance and help during the first stage of this project. Also to Kris Ramm, Ministry of Fisheries Observer, for collection of samples in Northern New Zealand. Samples from around central and southern New Zealand, South Australia, and from Namibia were made available from a frozen tissue collection held at NIWA. We are grateful to Edwin Niklitschek, Universidad Austral de Chile for samples from the Juan Fernández Archipelago, Chile and to Jamie Coughlan, University College Cork, Ireland and Sergio Stefanni, University of the Azores, Portugal who provided samples from the Northeast Atlantic Ocean. We also thank Sebastian Hernández for construction of the map used to indicate sampling locations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea I. Varela.

Additional information

Communicated by T. Reusch.

Appendices

Appendix 1

See Table 5.

Table 5 Values and probabilities of Tajima’s D and Fu’s F S for all the sampling sites

Appendix 2

See Table 6.

Table 6 Mismatch distribution values for all the sites

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Varela, A.I., Ritchie, P.A. & Smith, P.J. Low levels of global genetic differentiation and population expansion in the deep-sea teleost Hoplostethus atlanticus revealed by mitochondrial DNA sequences. Mar Biol 159, 1049–1060 (2012). https://doi.org/10.1007/s00227-012-1885-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-1885-x

Keywords

  • Orange Roughy
  • Northeast Atlantic Ocean
  • Haplotype Genealogy
  • Hoplostethus Atlanticus
  • Population Expansion Event