Marine Biology

, Volume 159, Issue 2, pp 303–317 | Cite as

Concentration of ascorbic acid and innate immune effectors in Engraulis ringens and Strangomera bentincki during their main spawning period (2007–2008) in the Humboldt current system off Chile

  • M. C. Krautz
  • L. R. Castro
  • M. González
  • J. C. Vera
  • H. E. González
Original Paper


In this study, we determined variations in ascorbic acid (AA) concentrations in the gonads and liver, and of the innate immune response (lysozyme activity and antiprotease) in the plasma of Engraulis ringens (anchoveta) and Strangomera bentincki (common sardine) during their reproductive seasons of 2007 and 2008 in the central area of the Humboldt Current. During the main spawning season in 2007, colder environmental conditions, higher phytoplankton biomasses, low dinoflagellate abundance and the dominance of large copepods in winter-early spring and of small copepods in late spring contributed to explain higher AA concentrations in anchoveta tissues. During the warmer year of 2008, lower phytoplankton biomasses, a notable increase of dinoflagellate abundance and the dominance of small-size copepods in winter and of larger copepods in spring occurred along with a drastic drop in AA concentrations in anchoveta tissues. These results contrasted with those in common sardine, a species in which AA did not vary as much as in anchoveta. An inverse trend between AA concentration in the liver and the gonadosomatic index suggested the AA utilization during gonadic maturation. Innate immune parameters were determined for the first time in small pelagic fish and constitute a new baseline data to evaluate their natural response to environmental changes. Changes in the distribution and abundance of edible taxa containing AA and edible for fish along with variations in AA in fish tissues during their reproductive season could become good indicators of the overall fish physiological condition resulting from variations in the trophic web structure.


Phytoplankton Ascorbic Acid Reproductive Season Skeletonema Lysozyme Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors of this study would like to thank our LOPEL colleagues (C. Valero, N. Alegría, A. Yañez, M.I. Muñoz) as well as G. Muñoz, D. Alarcón and O. Alarcón for their kind support in field work and sampling and R. González, G. Palma, V. Cordero, I. Muñoz, and F. Zúñiga for their support in biochemical analysis. Financial support was provided by a CONICYT doctoral fellowship to MCK, a CONICYT Thesis Research Grant 24080047; the Dirección de Postgrado of the Universidad de Concepción, a supplement Thesis Fellowship from FONDAP-COPAS, and the Grants FONDECYT 1070502 and 110534 to LRC and GC. Oceanographic data were provided by the COPAS Center Time Series (FONDAP Program, Project 15010000). Support for equipment was also obtained from the International Foundation of Science (Grant AA 3643-1 to MCK).


  1. Armstrong PB, Quigley JP (1999) α 2-macroglobulin: an evolutionarily conserved arm of the innate immune system. Dev Comp Immunol 23:375–390CrossRefGoogle Scholar
  2. Badrakhan CD, Petrat F, Holzhauser M, Fuchs A, Lomonosova EE, De Groot H, Kirsch M (2004) The methanol method for the quantification of ascorbic acid and dehydroascorbic acid in biological samples. J Biochem Biophys Meth 58:207–218CrossRefGoogle Scholar
  3. Balbontín F, Carretó NM, Maureira J (1979) Estudio experimental sobre selección de alimento y comportamiento alimentario en anchoveta y sardine en Chile (Pisces, Clupeiforme). Rev Biol Mar Valparaiso 16(3):211–220Google Scholar
  4. Blom JH, Dabrowski K (1995) Dietary ascorbyl phosphate results in high ascorbic acid content in eggs of rainbow trout. Comp Biochem Physiol 112A(1):75–79CrossRefGoogle Scholar
  5. Blom JH, Dabrowski K (1996) Ascorbic acid metabolism in fish: is there a maternal effect on the progeny? Aquaculture 147:215–224CrossRefGoogle Scholar
  6. Bowden TJ, Butler R, Bricknell IR (2004) Seasonal variation of serum lysozyme levels in Atlantic halibut (Hipploglossus hippoglossus L.). Fish Shellfish Immunol 17:129–135CrossRefGoogle Scholar
  7. Brown MR, Miller KA (1992) The ascorbic acid content of eleven species of microalgae used in mariculture. J Appl Phycol 4:205–215CrossRefGoogle Scholar
  8. Cahu C, Zambonino-Infante J, Takeuchi T (2003) Nutritional components affecting skeletal development in fish larvae. Aquaculture 227(1–4):254–258Google Scholar
  9. Castro LR, Claramunt G, Krautz MC, Llanos-Rivera A, Moreno P (2009a) Egg trait variation in anchoveta Engraulis ringens: a maternal response to changing environmental conditions in contrasting spawning habitats. Mar Ecol Prog Ser 381:237–248CrossRefGoogle Scholar
  10. Castro LR, Daneri G, Escribano R, Farías L,González H, Morales C, Pizarro O (2009b) Monitoreo de las condiciones bio-oceanográficas en la VIII y IX Regiones, año 2007. Informe final proyecto FIP 2007–2010. Fondo de Investigación pesquera, (
  11. Castro LR, Claramunt G, González H, Krautz MC, Llanos-Rivera A, Méndez J, Schneider W, Soto S (2010) Fatty acids in anchoveta eggs, Engraulis ringens, during two contrasting winter spawning seasons. Mar Ecol Prog Ser 420:193–205CrossRefGoogle Scholar
  12. Cubillos L, Canales M, Bucarey D, Rojas A, Alarcon R (1999) Epoca reproductiva y talla media de primera madurez sexual de Strangomera bentincki y Engraulis ringens en la zona centro-sur de Chile en el periodo 1993–1997. Invest Mar Valparaiso 27:73–86Google Scholar
  13. Cubillos LA, Arcos DF, Canales M, Bucarey D (2001) Seasonal growth of small pelagic fish off Talcahuano (37°S–73°W) Chile: a consequence of their reproductive strategy to seasonal upwelling? Aquat Living Resour 14:115–124CrossRefGoogle Scholar
  14. Cubillos LA, Bucarey DA, Canales M (2002) Monthly abundance estimation for common sardine Strangomera bentincki and anchovy Engraulis ringens in the Central-South Chile (34–40°S). Fish Resour 57:117–130CrossRefGoogle Scholar
  15. Cubillos LA, Ruiz P, Claramunt G, Gacitúa S, Nuñez S, Castro LR, Riquelme K, Alarcón C, Oyarzún C, Sepúlveda A (2007) Spawning, daily egg production, and spawning stock biomass estimation for common sardine (Strangomera bentincki) and anchovy (Engraulis ringens) off central southern Chile in 2002. Fish Res 86:228–240CrossRefGoogle Scholar
  16. Cubillos L, Castro L, Claramunt G (2008) Evaluación del Stock Desovante de Anchoveta y Sardina común entre la V y X Región, año 2007. Informe final FIP 2007–06. Fondo de Investigación Pesquera, Chile p. 126. (
  17. Cubillos L, Castro L, Claramunt G (2009) Evaluación del Stock Desovante de Anchoveta ySardina común entre la V y X Región, año 2007. Informe final FIP 2008-09. Fondo de Investigación Pesquera, Chile p. 140. (
  18. Dabrowski K (1991) Ascorbic acid status in high-mountain charr, Salvelinus akpinus, in relation to the reproductive cycle. Environ Biol Fish 31:213–217CrossRefGoogle Scholar
  19. Dabrowski K, Blom JH (1994) Ascorbic acid deposition in rainbow trout (Oncorhynchus mykiss) eggs and survival of embryos. Comp. Biochem. Physiol. vol. 108A(1):129–135CrossRefGoogle Scholar
  20. Dabrowski K, Ciereszko A (2001) Ascorbic acid and reproduction in fish: endocrine regulation and gamete quality. Aquac Res 32:623–638CrossRefGoogle Scholar
  21. Dabrowski K, Ciereszko RE, Blom JH, Ottobre JS (1995) Relationship between vitamin C and plasma concentrations of testosterone in female rainbow trout, Oncorhynchus mykis. Fish Physiol Biochem 14(5):409–414CrossRefGoogle Scholar
  22. Ellis AE (1990a) Lysozyme assays. In: Stolen JS, Fletcher TC, Anderson DP, Roberson BS, van Muiswinkel WB (eds) Techniques in fish immunology, vol 1. SOS Publications, Fair Haven, pp 101–103Google Scholar
  23. Ellis AE (1990b) Serum antiproteases in fish. In: Stolen JS, Fletcher TC, Anderson DP, Roberson BS, van Muiswinkel WB (eds) Techniques in fish immunology, vol 1. SOS Publications, Fair Haven, pp 95–99Google Scholar
  24. Espinoza P, Bertrand A (2008) Revisiting Peruvian anchovy (Engraulis ringens) trophodynamics provides a new vision of the Humboldt Current system. Prog Oceanog 79:215–227CrossRefGoogle Scholar
  25. Fletcher TC, White A, Baldo BA (1977) C-reactive protein-like precipitin and lysozyme in the lumpsucker Cyclopterus lumpus L. during the breeding season. Comp Biochem Physiol B 57(4):353–357CrossRefGoogle Scholar
  26. Gabaudan J, Verlhac V (2001) Critical review of the requirements of ascorbic acid in cold and cool water fishes (Salmonids, Percids, Plecoglossids and flatfishes). In: Dabrowski K (ed) Ascorbic acid in aquatic organisms. Status and perspectives. CRC Press, USA, pp 33–48Google Scholar
  27. González HE, Menschel E, Aparicio C, Barria C (2007) Spatial and temporal variability of the microplankton and detritus and their export to the shelf-sediments, in the upwelling area off Concepción, Chile (36°S), during 2002–2005. Prog Oceanogr 75:435–451CrossRefGoogle Scholar
  28. Hanif A, Bakopoulos V, Dimitriadis GJ (2004) Maternal transfer of humoral specific and non-immune parameters to sea bream (Sparus aurata). Fish Shellfish Immunol 17:411–435CrossRefGoogle Scholar
  29. Happette AM, Poulet S (1990) Variation of Vitamin C in some common species of marine zooplankton. Mar Ecol Prog Ser 64:69–79CrossRefGoogle Scholar
  30. Hernández A, Tort L (2003) Annual variation of complement, lysozyme and haemagglutinin levels in serum of the gilthead sea bream Sparus aurata. Fish Shellfish Immunol 15:479–481CrossRefGoogle Scholar
  31. Hutchinson TH, Manning MJ (1996) Seasonal trends in serum lysozyme activity and total protein concentration in dab (Limanda limanda L.) sampled from Lyme Bay, UK. Fish Shellfish Immunol 6:473–482CrossRefGoogle Scholar
  32. Lim C, Shoemaker CA, Klesius PH (2001) The effect of ascorbic acid on the immune response iin fish. In: Dabrowski K (ed) Ascorbic acid in Aquatic Organisms, Status and perspectives. CRC Press, USA, pp 149–166Google Scholar
  33. Moeslinger T, Brunner M, Spieckermann PG (1994) Spectrophotometric determination of dehydroascorbic acid in biological samples. Anal Biochem 221:290–296CrossRefGoogle Scholar
  34. Moeslinger T, Brunner M, Volf I, Spieckermann PG (1995) Spectrophotometric determination of ascorbic acid and dehydroascorbic acid. Clin Chem 41:1177–1181Google Scholar
  35. Moreau R, Dabrowski K (2001) Gulonolactone oxidase presence in fishes: activity and significance. In: Dabrowski K (ed) Ascorbic acid in aquatic organisms. Status and perspectives. CRC Press, USA, pp 13–32Google Scholar
  36. Onara DF, Forlenza M, González SF, Rakus KL, Pilarczyk A, Irnazarow I, Wiegertjes GF (2008) Differential transcription of multiple forms of alpha-2-macroglobulin in carp (Cyprinus carpio) infected with parasites. Dev Comp Immunol 32:339–347CrossRefGoogle Scholar
  37. Poulet SA, Hapette AM, Cole RB, Tabet JC (1989) Vitamin C in marine copepods. Limnol Oceanog 34(7):1325–1331CrossRefGoogle Scholar
  38. Rebolledo H, Cubillos L (2003) Items alimentarios de la anchoveta y la sardine común en la zona Centro Sur durante el verano de 2003. In: Evaluación hidroacústica del reclutamiento de anchoveta y sardina común entre la V y X Regiones, año 2002. Informe Final proyecto FIP 2002-13, FIP-IT/2002-13, p. 203. (
  39. Saurabh S, Sahoo PK (2008) Lysozyme: an important defense molecule of fish innate immune system. Aquac Res 39:223–239CrossRefGoogle Scholar
  40. Tapia F, Castro L, Daneri G, Fernández C, González H, Hidalgo P, Morales C, Pizarro O (2010) Monitoreo de las condiciones bio-oceanográficas en las VIII y IX regiones, año 2008. Infome Final FIP 2008-20. Fondo de Investigación Pesquera, Chile. p. 182. (
  41. Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton–Methodik. Mitt Int Ver Theor Angew Limnol 9:1–39Google Scholar
  42. van der Lingen CD, Hutchings L, Field JG (2006) Comparative trophodynamics of anchovy Engraulis encrasicolus and sardine Sardinops sagax in the southern Benguela: are species alternations between small pelagic fish trophodynamically mediated? African J Mar Sci 28(3–4):465–477CrossRefGoogle Scholar
  43. Zuo X, Woo PTK (1997) In vivo neutralization of Criptobia salmositica metallo-protease by α 2-macroglobulin in the blood of rainbow trout Oncorhynchus mykiss and in brook charr Salvelinus fontinalis. Dis Aquatic Org 29:67–72CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • M. C. Krautz
    • 1
    • 2
  • L. R. Castro
    • 1
    • 3
  • M. González
    • 4
  • J. C. Vera
    • 5
  • H. E. González
    • 3
    • 6
  1. 1.Laboratorio de Oceanografía Pesquera y Ecología Larval (LOPEL), Departamento de OceanografíaUniversidad de ConcepciónConcepciónChile
  2. 2.Programa de Postgrados en Oceanografía, Departamento de OceanografíaUniversidad de ConcepciónConcepciónChile
  3. 3.Centro de Investigación Oceanográfica en el Pacífico Sur Oriental (COPAS)Universidad de ConcepciónConcepciónChile
  4. 4.Departamento Bioquímica Clínica e InmunologíaFacultad de Farmacia, Universidad de ConcepciónConcepciónChile
  5. 5.Departamento de FisiopatologíaFacultad de Ciencias Biológicas, Universidad de ConcepciónConcepciónChile
  6. 6.Instituto de Ciencias Marinas y LimnológicasUniversidad Austral de ChileValdiviaChile

Personalised recommendations