Skip to main content

Advertisement

Log in

Foraging ecology of leatherback sea turtles in the Western North Atlantic determined through multi-tissue stable isotope analyses

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Leatherback turtles, Dermochelys coriacea, are highly migratory, spending most of their lives submerged or offshore where their feeding habits are difficult to observe. In order to elucidate the foraging ecology of leatherbacks off Massachusetts, USA, stable isotope analyses were performed on leatherback tissues and prey collected from 2005 to 2009. Stable isotope ratios of nitrogen and carbon were determined in whole blood, red blood cells, blood plasma, muscle, liver, and skin from adult male, female, and subadult leatherbacks. Isotopic values were analyzed by body size (curved carapace length) and grouped by sex, and groups were tested for dietary differences. Gelatinous zooplankton samples were collected from leatherback foraging grounds using surface dip nets and stratified net tows, and prey contribution to leatherback diet was estimated using a two-isotope Bayesian mixing model. Skin and whole blood δ13C values and red blood cell δ15N values were correlated with body size, while δ13C values of red blood cells, whole blood, and blood plasma differed by sex. Mixing model results suggest that leatherbacks foraging off Massachusetts primarily consume the scyphozoan jellyfishes, Cyanea capillata and Chrysaora quinquecirrha, and ctenophores, while a smaller proportion of their diet comes from holoplanktonic salps and sea butterflies (Cymbuliidae). Our results are consistent with historical observations of leatherback turtles feeding on scyphozoan prey in this region and offer new insight into size- and sex-related differences in leatherback diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abelson PH, Hoering TC (1961) Carbon isotope fractionation in formation of amino acids by photosynthetic organisms. Proc Natl Acad Sci USA 47:623–632

    Article  CAS  Google Scholar 

  • Arai MN (2005) Predation on pelagic coelenterates: a review. J Mar Biol Assoc UK 85:523–528

    Article  Google Scholar 

  • Belkin IM, Cornillon PC, Sherman K (2009) Fronts in large marine ecosystems. Prog Oceanogr 81:223–236

    Article  Google Scholar 

  • Benson SR, Forney KA, Harvey JT, Carretta JV, Dutton PH (2007) Abundance, distribution, and habitat of leatherback turtles (Dermochelys coriacea) off California, 1990–2003. Fish Bull 105:337–347

    Google Scholar 

  • Bjorndal KA (1997) Foraging ecology and nutrition of sea turtles. In: Lutz PL, Musick JA (eds) The biology of sea turtles. CRC Press, Boca Raton, pp 199–231

    Google Scholar 

  • Bleakney JS (1965) Reports of marine turtles from New England and Eastern Canada. Can Field Nat 79(2):120–128

    Google Scholar 

  • Bostrom BL, Jones TT, Hastings M, Jones DR (2010) Behavior and physiology: the thermal strategy of leatherback turtles. PLoS ONE 5(11):e13925. doi:10.1371/journal.pone.0013925

    Article  Google Scholar 

  • Boulon RH, Dutton PH, McDonald DL (1996) Leatherback turtles (Dermochelys coriacea) on St. Croix, U.S. Virgin Islands: fifteen years of conservation. Chelon Conserv Biol 2:141–147

    Google Scholar 

  • Brongersma LD (1969) Miscellaneous notes on turtles, IIA, IIB. Proc Koninklijke Nederlandse Akademie Wetenschappen (ser C) 72:76–102

  • Brudenall DK, Schwab IR, Fritsches KA (2008) Ocular morphology of the Leatherback sea turtle (Dermochelys coriacea). Vet Ophthalmol 11:99–110

    Article  Google Scholar 

  • Casey J, Garner J, Garner S, Williard A (2010) Diel foraging behavior of gravid leatherback sea turtles in deep water of the Caribbean Sea. J Exp Biol 213:3961–3971

    Article  Google Scholar 

  • Caut S, Guirlet E, Angulo E, Das K, Girondot M (2008) Isotope analysis reveals foraging area dichotomy for Atlantic leatherback turtles. PLoS Biol 3(3):e1845

    Google Scholar 

  • Caut S, Angulo E, Courchamp F (2009) Variation in discrimination of factors (∆15N and (∆13C): the effect of diet isotopic values and applications for diet reconstruction. J Appl Ecol 46:443–453

    Article  CAS  Google Scholar 

  • Clarke A, Holmes LJ, Gore DJ (1992) Proximate and elemental composition of gelatinous zooplankton from the Southern Ocean. J Exp Mar Biol Ecol 155:55–68

    Article  Google Scholar 

  • Davenport J, Balazs GH (1991) Fiery bodies—are pyrosomas important items in the diet of leatherback turtles? Br Herp Soc B 37:33–38

    Google Scholar 

  • Deibel D, Paffenhöfer GA (2009) Predictability of patches of neritic salps and doliolids (Tunicata, Thaliacea). J Plankton Res 31:1571–1579

    Article  Google Scholar 

  • den Hartog JC, Van Nierop MM (1984) A study on the gut contents of six leathery turtles Dermochelys coriacea (Linnaeus) (Reptilia: Testudines: Dermochelyidae) from British waters and from the Netherlands. Zool Verh 209:1–36

    Google Scholar 

  • DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506

    Article  CAS  Google Scholar 

  • DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351

    Article  CAS  Google Scholar 

  • Desjardin NA (2005) Spatial, temporal, and dietary overlap of leatherback sea turtles (Dermochelys coriacea) and ocean sunfishes (family Molidae). Master Thesis, Florida Atlantic University, Boca Raton

  • Doyle TK, Houghton JDR, McDevitt R, Davenport J, Hays GC (2007) The energy density of jellyfish: estimates from bomb calorimetry and proximate-composition. J Exp Mar Biol Ecol 343:239–252

    Article  Google Scholar 

  • Duron M (1978) Contribution à létude de la biologie de Dermochelys coriacea (Linné) dans les Pertuis Charentais. Thése Universite Bordeaux 3me cycle 1465

  • Eckert SA (2002a) Distribution of juvenile leatherback sea turtle Dermochelys coriacea sightings. Mar Ecol Prog Ser 230:289–293

    Article  Google Scholar 

  • Eckert SA (2002b) Swim speed and movement patterns of gravid leatherback sea turtles (Dermochelys coriacea) at St. Croix, US Virgin Islands. J Exp Biol 205:3689–3697

    Google Scholar 

  • Eckert SA, Eckert KL, Ponganis P, Kooyman GL (1989) Diving and foraging behavior by leatherback sea turtles. Can J Zool 67:2834–2840

    Article  Google Scholar 

  • Eisenberg JF, Frazier J (1983) A leatherback turtle (Dermochelys coriacea) feeding in the wild. J Herpetol 17(1):81–82

    Article  Google Scholar 

  • Ferraroli S, Georges JY, Gaspar P, Maho YL (2004) Endangered species: where leatherback turtles meet fisheries. Nature 429:521–522

    Article  CAS  Google Scholar 

  • France RL (1995) C-13 Enrichment in benthic compared to planktonic algae—foodweb implications. Mar Ecol Prog Ser 124:307–312

    Article  Google Scholar 

  • Fraser-Brunner A (1951) The ocean sunfishes (family Molidae). Bull Br Mus 1:89–121

    Google Scholar 

  • Frazier J, Meneghel MD, Achaval F (1985) A clarification on the feeding habits of Dermochelys coriacea. J Herpetol 19(1):159–160

    Article  Google Scholar 

  • Fry B, Sherr EB (1984) δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib Mar Sci 27:13–47

    CAS  Google Scholar 

  • Gannes LZ, O’Brien DM, Martínez del Rio C (1997) Stable isotopes in animal ecology: assumptions, caveats, and a call for more laboratory experiments. Ecology 78:1271–1276

    Article  Google Scholar 

  • Gannes LZ, Martínez del Rio C, Koch P (1998) Natural abundance variations in stable isotopes and their potential uses in animal physiological ecology. Comp Biochem Physiol 119:725–737

    Article  CAS  Google Scholar 

  • Godley BJ, Thompson DR, Waldron S, Furness RW (1998) The trophic status of marine turtles as determined by stable isotope analysis. Mar Ecol Prog Ser 166:277–284

    Article  Google Scholar 

  • Graham WM, Pages F, Hammer WM (2001) A physical context for gelatinous zooplankton aggregations: a review. Hydrobiologia 451:199–212

    Article  Google Scholar 

  • Grant GS, Ferrell D (1993) Leatherback turtle, Dermochelys coriacea (Reptilia, Dermochelidae)—notes on near-shore feeding behavior and association with Cobia. Brimleyana 19:77–81

    Google Scholar 

  • Hatase H, Takai N, Matsuzawa Y, Sakamoto W, Omuta K, Goto K, Arai N, Fujiwara T (2002) Size-related differences in feeding habitat use of adult female loggerhead turtles Caretta caretta around Japan determined by stable isotope analyses and satellite telemetry. Mar Ecol Prog Ser 233:273–281

    Article  Google Scholar 

  • Hatase H, Sato K, Yamaguchi M, Takahashi K, Tsukamoto K (2006) Individual variation in feeding habitat use by adult female green sea turtles (Chelonia mydas): are they obligately neritic herbivores? Oecologia 149:52–64

    Article  Google Scholar 

  • Hawkes LA, Broderick AC, Coyne MS, Godfrey MH, Lopez-Jurado LF, Lopez-Suarez P, Merino SE, Varo-Cruz N, Godley BJ (2006) Phenotypically linked dichotomy in sea turtle foraging requires multiple conservation approaches. Curr Biol 16:990–995

    Article  CAS  Google Scholar 

  • Hobson KA (1999) Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120:314–326

    Article  Google Scholar 

  • Hobson KA, Clark RG (1992) Assessing avian diets using stable isotopes II: factors influencing diet-tissue fractionation. Condor 94:189–197

    Article  Google Scholar 

  • Hobson KA, Alisauskas RT, Clark RG (1993) Stable-nitrogen isotope enrichment in avian tissues due to fasting and nutritional stress-implications for isotopic analyses of diet. Condor 95:388–394

    Article  Google Scholar 

  • Hobson KA, Piatt JF, Pitocchelli J (1994) Using stable isotopes to determine seabird trophic relationships. J Anim Ecol 63:786–798

    Article  Google Scholar 

  • Hooper SN, Paradis M, Ackman RG (1973) Distribution of trans-6-hexadecenoic acid, 7-methyl-7-hexadecenoic acid and common fatty acids in lipids of ocean sunfish Mola mola. Lipids 8:509–516

    Article  CAS  Google Scholar 

  • Houghton JDR, Doyle TK, Davenport J, Wilson RP, Hays GC (2008) The role of infrequent and extraordinary deep dives in leatherback turtles (Dermochelys coriacea). J Exp Biol 211:2566–2575

    Article  Google Scholar 

  • Innis C, Merigo C, Dodge K, Tlusty M, Dodge M, Sharp B, Myers A, McIntosh A, Wunn D, Perkins C, Herdt T, Norton T, Lutcavage M (2010) Health evaluation of leatherback turtles (Dermochelys coriacea) in the Northwestern Atlantic during direct capture and fisheries gear disentanglement. Chelonian Conserv Biol 9:205–222

    Article  Google Scholar 

  • James MC (2004) Dermochelys coriacea (leatherback sea turtle) penis display. Herpetol Rev 35(3):264

    Google Scholar 

  • James MC, Herman TB (2001) Feeding of Dermochelys coriacea on medusae in the Northwest Atlantic. Chelonian Conserv Biol 4:202–205

    Google Scholar 

  • James MC, Ottensmeyer CA, Myers RA (2005a) Identification of high-use habitat and threats to leatherback sea turtles in northern waters: new directions for conservation. Ecol Lett 8:195–201

    Article  Google Scholar 

  • James MC, Myers RA, Ottensmeyer CA (2005b) Behavior of leatherback sea turtles, Dermochelys coriacea, during the migratory cycle. Proc R Soc B 272:1547–1555

    Article  Google Scholar 

  • James MC, Sherrill-Mix SA, Myers RA (2007) Population characteristics and seasonal migrations of leatherback sea turtles at high latitudes. Mar Ecol Prog Ser 337:245–254

    Article  Google Scholar 

  • Johnson WS, Allen DM (2005) Zooplankton of the Atlantic and Gulf coasts : a guide to their identification and ecology. The John Hopkins University Press, Baltimore

    Google Scholar 

  • Jones TT, Hastings MD, Bostrom BL, Pauly D, Jones DR (2011) Growth of captive leatherback turtles, Dermochelys coriacea, with inferences on growth in the wild: Implications for populations decine and recovery. J Exp Mar Biol Ecol 399:84–92

    Article  Google Scholar 

  • Kiljunen M, Grey J, Sinisalo T, Harrod C, Immonen H, Jones RI (2006) A revised model for lipid-normalizing δ13C values from aquatic organisms, with implications for isotope mixing models. J Appl Ecol 43:1213–1222

    Article  CAS  Google Scholar 

  • Larson RJ (1976) Marine flora and fauna of the northeastern United States. Cnidaria:Scyphozoa. NOAA Tech Rep NMFS Circ 397

  • Lazell JD (1980) New England waters: critical habitat for marine turtles. Copeia 1980:290–295

    Article  Google Scholar 

  • Logan J, Jardine T, Miller T, Bunn S, Cunjak R, Lutcavage M (2008) Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. J Anim Ecol 77:838–846

    Article  Google Scholar 

  • Longhurst AR (1998) Ecological geography of the sea. Academic Press, San Diego

    Google Scholar 

  • Lutcavage ME (1996) Planning your next meal: leatherback travel routes and ocean fronts. In: Keinath JA, Barnard DE, Musick JA, Bell BA (eds) Proceedings of the 15th annual workshop on sea turtle biology and conservation. NOAA Tech Memo NMFS-SEFSC-387, p 355

  • MacGintie GE (1938) Notes on the natural history of some marine animals. Am Midl Nat 19:207–219

    Article  Google Scholar 

  • Madin LP, Kremer P, Wiebe PH, Purcell JE, Horgan EH, Nemazie DA (2006) Periodic swarms of the salp Salpa aspera in the slope waters of the NE United States: biovolume, vertical migration, grazing, and vertical flux. Deep Sea Res 53:804–819

    Article  Google Scholar 

  • Mann KH, Lazier JRN (2006) Dynamics of marine ecosystems: biological-physical interactions in the oceans, 3rd edn. Blackwell Science Inc., Cambridge

    Google Scholar 

  • Martínez del Rio C, Wolf BO (2004) Mass-balance models for animal isotopic ecology. In: Starck JM, Wang T (eds) Physiological consequences of feeding. Springer, Berlin

    Google Scholar 

  • McClellan CM, Braun-McNeill J, Avens L, Wallace BP, Read AJ (2010) Stable isotopes confirm a foraging dichotomy in juvenile loggerhead sea turtles. J Exp Mar Biol Ecol 387:44–51

    Article  Google Scholar 

  • Minagawa M, Wada E (1984) Stepwise enrichment of δ15N along food chains: further evidence of the relation between δ15N and animal age. Geochim Cosmochim Acta 48:1135–1140

    Article  CAS  Google Scholar 

  • Musick JA, Limpus CJ (1997) Habitat utilization and migration in juvenile sea turtles. In: Lutz PL, Musick JA (eds) The biology of sea turtles. CRC Press, Boca Raton, pp 137–163

    Google Scholar 

  • Park R, Epstein S (1961) Metabolic fractionation of C13 & C12 in plants. Plant Physiol 36:133–138

    Article  CAS  Google Scholar 

  • Parnell AC, Inger R, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5(3):e9672. doi:10.1371/journal.pone.0009672

    Article  Google Scholar 

  • Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Ann Rev Ecol Syst 18:293–320

    Article  Google Scholar 

  • Phillips DL, Gregg JW (2003) Source partitioning using stable isotopes: coping with too many sources. Oecologia 136:261–269

    Article  Google Scholar 

  • Phillips DL, Newsome SD, Gregg JW (2005) Combining sources in stable isotope mixing models: alternative methods. Oecologia 144:520–524

    Article  Google Scholar 

  • Pope EC, Hays GC, Thys TM, Doyle TK, Sims DW, Queiroz N, Hobson VJ, Kubicek L, Houghton JDR (2010) The biology and ecology of the ocean sunfish Mola mola: a review of current knowledge and future research perspectives. Rev Fish Biol Fish 20:471–487

    Article  Google Scholar 

  • Popp BN, Graham BS, Olson RJ, Hannides CCS, Lott MJ, López-Ibarra GA, Galván-Magaña F, Fry B (2007) Insight into the trophic ecology of yellowfin tuna, Thunnus albacares, from compound-specific nitrogen isotope analysis of proteinaceous amino acids. In: Dawson T, Seigwolf R (eds) Isotopes as tracers of ecological change. Elsevier, San Diego, pp 173–190

    Chapter  Google Scholar 

  • Post DM, Layman CA, Arrington DA, Takimoto G, Quattrochi J, Montaña CG (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152:179–189

    Article  Google Scholar 

  • Pritchard PCH (1973) International migrations of South American sea turtles (Cheloniidae and Dermochelyidae). Anim Behav 21:18–27

    Article  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Rau GH, Sweeney RE, Kaplan IR (1982) Plankton 13C: 12C ratio changes with latitude: differences between northern and southern oceans. Deep Sea Res 29:1035–1039

    Article  CAS  Google Scholar 

  • Reich KJ, Bjorndal KA, Bolten AB (2007) The ‘lost years’ of green turtles: using stable isotopes to study cryptic lifestages. Biol Lett 3:712–714

    Article  Google Scholar 

  • Reich KJ, Bjorndal KA, Martínez del Rio C (2008) Effects of growth and tissue type on the kinetics of 13C and 15 N incorporation in a rapidly growing ectotherm. Oecologia 155:651–663

    Article  Google Scholar 

  • Reich KJ, Bjorndal KA, Frick MG, Witherington BE, Johnson C, Bolten AB (2009) Polymodal foraging in adult female loggerheads (Caretta caretta). Mar Biol 157:113–121

    Article  Google Scholar 

  • Rooker JR, Turner JP, Holt SA (2006) Trophic ecology of Sargassum-associated fishes in the Gulf of Mexico determined from stable isotopes and fatty acids. Mar Ecol Prog Ser 313:249–259

    Article  CAS  Google Scholar 

  • Saino T, Hattori A (1987) Geographic variation of the water column distribution of suspended particulate nitrogen and its 15N natural abundance in the Pacific and its marginal seas. Deep Sea Res 34:807–827

    Article  CAS  Google Scholar 

  • Sale A, Luschi P, Mencacci R, Lambardi P, Hughes GR, Hays GC, Benvenuti S, Papi F (2006) Long-term monitoring of leatherback turtle dive behaviour during oceanic movements. J Exp Mar Biol Ecol 328:197–210

    Article  Google Scholar 

  • Seminoff JA, Bjorndal KA, Bolten AB (2007) Stable carbon and nitrogen isotope discrimination and turnover in Pond Sliders Trachemys scripta: insights for trophic study of freshwater turtles. Copeia 2007:534−542

  • Seminoff JA, Jones TT, Eguchi T, Hastings M, Jones DR (2009) Stable carbon and nitrogen isotope discrimination in soft tissues of the leatherback turtle (Dermochelys coriacea): insights for trophic studies of marine turtles. J Exp Mar Biol Ecol 381:33–41

    Article  CAS  Google Scholar 

  • Shillinger GL, Palacios DM, Bailey H, Bograd SJ, Swithenbank AM, Gaspar P, Wallace BP, Spotila JR, Paladino FV, Peidra R, Eckert SA, Block BA (2008) Persistent leatherback turtle migrations present opportunities for conservation. PLoS Biol 6(7):e171

    Article  Google Scholar 

  • Sweeting CJ, Barry J, Barnes C, Polunin NVC, Jennings S (2007a) Effects of body size and environment on diet-tissue δ 15N fractionation in fishes. J Exp Mar Biol Ecol 340:1–10

    Article  CAS  Google Scholar 

  • Sweeting CJ, Barry J, Polunin NVC, Jennings S (2007b) Effects of body size and environment on diet-tissue δ 13C fractionation in fishes. J Exp Mar Biol Ecol 352:165–176

    Article  Google Scholar 

  • TEWG (Turtle Expert Working Group) (2007) An assessment of the leatherback turtle population in the Atlantic Ocean. NOAA Tech Memo NMFS-SEFSC-555

  • Tieszen LL, Boutton TW, Tesdahl KG, Slade NA (1983) Fractionation and turnover of stable carbon isotopes in animal tissues: implications for δ13C analysis of diet. Oecologia 57:32–37

    Article  Google Scholar 

  • Vanderklift MA, Ponsard S (2003) Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136:169–182

    Article  Google Scholar 

  • Wada E, Hattori A (1991) Nitrogen in the sea: forms, abundances, and rate processes. CRC Press, Boca Raton

    Google Scholar 

  • Wallace BP, Seminoff JA, Kilham SS, Spotila JR, Dutton PH (2006a) Leatherback turtles as oceanographic indicators: stable isotope analyses reveal a trophic dichotomy between ocean basins. Mar Biol 149:953–960

    Article  CAS  Google Scholar 

  • Wallace BP, Kilham SS, Paladino FV, Spotila JR (2006b) Energy budget calculations indicate resource limitation in eastern Pacific leatherback turtles. Mar Ecol Prog Ser 318:263–270

    Article  Google Scholar 

  • Wallace BP, Avens L, Braun-McNeill J, McClellan CM (2009) The diet composition of immature loggerheads: insights on trophic niche, growth rates, and fisheries interactions. J Exp Mar Biol Ecol 373:50–57

    Article  Google Scholar 

  • Wiebe PH, Burt KH, Boyd SH, Morton AW (1976) A multiple opening/closing net and environmental sensing system for sampling zooplankton. J Mar Res 34:313–326

    Google Scholar 

  • Wiebe PH, Morton AW, Bradley AM, Backus RH, Craddock JE, Barber V, Cowles TJ, Flierl GR (1985) New developments in the MOCNESS, an apparatus for sampling zooplankton and micronekton. Mar Biol 87:313–323

    Article  Google Scholar 

  • Witt MJ, Broderick AC, Johns DJ, Martin C, Penrose R, Hoogmoed MS, Godley BJ (2007) Prey landscapes help identify potential foraging habitats for leatherback turtles in the NE Atlantic. Mar Ecol Prog Ser 337:231–244

    Article  Google Scholar 

  • Wolf N, Carleton SA, Martínez del Rio C (2009) Ten years of experimental animal isotopic ecology. Funct Ecol 23:17–26

    Article  Google Scholar 

Download references

Acknowledgments

We are indebted to many people for making this research possible: C. Merigo, C. Innis, A. Myers, M. Dodge, G. Purmont, M. Leach, B. Sharp, S. Landry, M. Murphy, G. Tomasian, N. Fragoso, K. Sampson, R. Smolowitz, K. Hirokawa, J. Casey, S. Leach, J. Wilson, E. Eldredge, M. Dodd, T. Norton, M. Zani, T. Naessig, K. Sutherland, K. Houtler, I. Hanley, and the late J. Vickery and his crew of the R/V Marguerite. Special thanks to P. Wiebe for lending us his MOCNESS and for his expert advice on running it. We thank A. Ouimette and the staff of the UNH Stable Isotope Lab for assistance with isotope analyses. B. Stacy and J. Wyneken kindly provided samples from stranded Florida leatherbacks. The authors acknowledge use of SEATURTLE.ORG’s Maptool program (http://www.seaturtle.org/maptool/). This work was conducted under the authority of the National Marine Fisheries Service Endangered Species Act Section 10 Permit #1557-03 and University of New Hampshire IACUC #060501, and funded by National Oceanic and Atmospheric Administration Grant #NA04NMF4550391 and National Fish and Wildlife Foundation Grant #2008-0076-000 to M. Lutcavage. Turtle disentanglement was conducted under the authority of NOAA 50 CFR Part 222.310 and supported by the Massachusetts Division of Marine Fisheries through the National Oceanic and Atmospheric Administration Grant #NA07NMF4720052. Additional funding was provided by the Cape Cod Commercial Hook Fishermen’s Association. K. D. was supported by a UNH Marine Program Fellowship. We thank H. Haas, J. Houghton, B. Wallace, and one anonymous reviewer for comments that improved earlier drafts of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kara L. Dodge.

Additional information

Communicated by J. D. R. Houghton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dodge, K.L., Logan, J.M. & Lutcavage, M.E. Foraging ecology of leatherback sea turtles in the Western North Atlantic determined through multi-tissue stable isotope analyses. Mar Biol 158, 2813–2824 (2011). https://doi.org/10.1007/s00227-011-1780-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-011-1780-x

Keywords

Navigation