Skip to main content

Advertisement

Log in

Area-specific temporal changes of species composition and species-specific range shifts in rocky-shore mollusks associated with warming Kuroshio Current

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Increases of low-latitude species in various sea areas and poleward shifts of ranges of many species have been reported and linked to warming environments. To examine the generality of these trends for mollusks, we conducted 7 quadrat surveys during 1978–2006 on Pacific rocky shores in Japan (26.6–45.0°N). Results showed that the dominance of southern species increased on 11 of the 15 shores in a southern, warming sea area but on only 1 of the 6 shores in a northern area with no warming trend. The latitudes of species ranges increased on average but showed large interspecific variations which showed a weak, positive correlation with interspecific taxonomic distance. The differences of these results from the previously reported trends are discussed in relation to the unique current patterns in our study area and the phylogenetic constraints of species-specific responses to a warming environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amio M (1963) A comparative embryology of marine gastropods, with ecological considerations. J Shimonoseki Univ Fish 15:15–358 (in Japanese with English abstract)

    Google Scholar 

  • Asakura A, Suzuki H (1987) Zoogeographical aspects of rocky-intertidal molluscan fauna of the Pacific coasts of Japan. Mar Biol 95:75–81

    Article  Google Scholar 

  • Barry JP, Baxter CH, Sagarin RD, Gilman SE (1995) Climate-related, long-term faunal changes in a California rocky intertidal community. Science 267:672–675

    Article  CAS  Google Scholar 

  • Beesley PL, Ross GJB, Wells A. (1998) Mollusca: the southern synthesis. Fauna of Australia, vol 5. Part A, xvi, p 563, part B, viii, pp 565–1234. CSIRO Publishing, Melbourne

  • Berge J, Johnsen G, Nilsen F, Gulliksen B, Slagstad D (2005) Ocean temperature oscillations enable reappearance of blue mussels Mytilus edulis in Svalbard after a 1,000 year absence. Mar Ecol Prog Ser 303:167–175. doi:10.3354/meps303167

    Article  Google Scholar 

  • Bertness MD, Leonard GH, Levine JM, Bruno JF (1999) Climate-driven interactions among rocky intertidal organisms caught between a rock and a hot place. Oecologia 120:446–450

    Article  Google Scholar 

  • Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745

    Article  Google Scholar 

  • Brown JH (1984) On the relationship between abundance and distribution of species. Am Nat 124:255–279

    Article  Google Scholar 

  • Brown JH, Mehlman DW, Stevens GC (1995) Spatial variation in abundance. Ecology 76:2028–2043

    Article  Google Scholar 

  • Davis CC, Willis CG, Primack RB, Miller-Rushing AJ (2010) The importance of phylogeny to the study of phenological response to global climate change. Philos Trans R Soc B 365:3201–3213. doi:10.1098/rstb.2010.0130

    Article  Google Scholar 

  • Dobson AJ (1990) An introduction to generalized linear models. Chapman & Hall, London

    Book  Google Scholar 

  • Duda TFJ, Kohn AJ, Palumbi SR (2001) Origins of diverse feeding ecologies within Conus, a genus of venomous marine gastropods. Biol J Linn Soc 73:391–409. doi:10.1006/bijl.2001.0544

    Article  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Firth LB, Crowe TP, Moore P, Thompson RC, Hawkins SJ (2009) Predicting impacts of climate-induced range expansion: an experimental framework and a test involving key grazers on temperate rocky shores. Glob Change Biol 15:1413–1422. doi:10.1111/j.1365-2486.2009.01863.x

    Article  Google Scholar 

  • Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetic analysis and comparative data: a test and review of evidence. Am Nat 160:712–726

    Article  CAS  Google Scholar 

  • Gilman SE, Wethey DS, Helmuth B (2006) Variation in the sensitivity of organismal body temperature to climate change over local and geographic scales. Proc Natl Acad Sci USA 103:9560–9565. doi:10.1073/pnas.0510992103

    Article  CAS  Google Scholar 

  • Hansen TF, Martins EP (1996) Translating between microevolutionary process and macroevolutionary patterns: the correlation structure of interspecific data. Evolution 50:1404–1417

    Article  Google Scholar 

  • Harley CDG, Hughes AR, Hultgren KM, Miner BG, Sorte CJB, Thornber CS, Rodriguez LF, Tomanek L, Williams SL (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241. doi:10.1111/j.1461-0248.2005.00871.x

    Article  Google Scholar 

  • Harmon LJ, Glor RE (2010) Poor statistical performance of the Mantel test in phylogenetic comparative analyses. Evolution 64:2173–2178. doi:10.1111/j.1558-5646.2010.00973.x

    PubMed  Google Scholar 

  • Hawkins SJ, Southward AJ, Genner MJ (2003) Detection of environmental change in a marine ecosystem-evidence from the western English Channel. Sci Total Environ 310:245–256. doi:10.1016/S0048-9697(02)00645-9

    Article  CAS  Google Scholar 

  • Hawkins SJ, Moore PJ, Burrows MT, Poloczanska E, Mieszkowska N, Herbert RJH, Jenkins SR, Thompson RC, Genner MJ, Southward AJ (2008) Complex interactions in a rapidly changing world: responses of rocky shore communities to recent climate change. Clim Res 37:123–133. doi:10.3354/cr00768

    Article  Google Scholar 

  • Helmuth B, Kingsolver JG, Carrington E (2004) Biophysics, physiological ecology, and climate change: does mechanism matter? Annu Rev Physiol 67:177–201. doi:10.1146/annurev.physiol.67.040403.105027

    Article  Google Scholar 

  • Hilbish TJ, Brannock PM, Jones KR, Smith AB, Bullock BN, Wethey DS (2010) Historical changes in the distributions of invasive and endemic marine invertebrates are contrary to global warming predictions: the effects of decadal climate oscillations. J Biogeogr 37:423–431. doi:10.1111/j.1365-2699.2009.02218.x

    Article  Google Scholar 

  • Houghton J (2004) Global warming: the complete briefing. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Intergovernmental Panel on Climate Change [IPCC] (2007) Climate change 2007. The physical science basis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Japan Meteorological Agency (2010a) Kako no Kishou Deta Kensaku (Search for meteorological record) http://www.data.jma.go.jp/obd/stats/etrn/index.php?prec_no=17&prec_ch=%96%D4%91%96%8Ex%92%A1&block_no=47409&block_ch=%96%D4%91%96. Accessed 10 March 2010 (in Japanese)

  • Japan Meteorological Agency (2010b) AMeDAS http://rms1.agsearch.agropedia.affrc.go.jp/contents/gaiyou_i.html. Accessed 10 March 2010 (in Japanese)

  • Japan Meteorological Agency (2010c) Kaimen Suion no Choki Henka Keikoh, Nihon Kinkai (Long-term trend in the sea-surface water temperature around Japan) http://www.data.kishou.go.jp/kaiyou/shindan/a_1/japan_warm/japan_warm.html. Accessed 10 March 2010 (in Japanese)

  • Japan Meteorological Agency (2010d) Kuroshio http://www.data.kishou.go.jp/kaiyou/shindan/sougou/html/2.2.2.html. Accessed 5 May 2010 (in Japanese)

  • Japan Meteorological Agency (2010e) http://www.data.kishou.go.jp/kaiyou/db/hakodate/knowledge/oyashio.html. Accessed 5 May 2010 (in Japanese)

  • Kawai H (1991) Nagare To Seibutu To (currents and organisms). Kyoto University Press, Kyoto (in Japanese)

    Google Scholar 

  • Kurihara T (2007) Spatiotemporal variations in rocky intertidal malacofauna throughout Japan in the 1970s and 1980s. Mar Biol 153:61–70

    Article  Google Scholar 

  • Leonard GH (2000) Latitudinal variation in species interactions: a test in the New England rocky intertidal zone. Ecology 81:1015–1030

    Article  Google Scholar 

  • Levitus S, Antonov JI, Boyer TP, Stephens C (2000) Warming of the world ocean. Science 287:2225–2229

    Article  CAS  Google Scholar 

  • Lima FP, Ribeiro PA, Queiroz N, Hawkins SJ, Santos AM (2007) Do distributional shifts of northern and southern species of algae match the warming pattern? Glob Change Biol 13:2592–2604. doi:10.1111/j.1365-2486.2007.01451.x

    Article  Google Scholar 

  • Ling SD (2008) Range expansion of a habitat-modifying species leads to loss of taxonomic diversity: a new and impoverished reef state. Oecologia 156:883–894. doi:10.1007/s00442-008-1043-9

    Article  CAS  Google Scholar 

  • Lomolino MV, Riddle BR, Brown JH (2005) Biogeography. Sinauer Associates, Sunderland

    Google Scholar 

  • Manly BFJ (1997) Randomization, bootstrap, and Monte Carlo methods in biology. Chapman & Hall, London

    Google Scholar 

  • McCarty JP (2001) Ecological consequences of recent climate change. Conserv Biol 15:320–331

    Article  Google Scholar 

  • McKitrick MC (1993) Phylogenetic constraint in evolutionary-theory: has it any explanatory power? Annu Rev Ecol Syst 24:307–330

    Article  Google Scholar 

  • Mieszkowska N, Kendall MA, Hawkins SJ, Leaper R, Williamson P, Hardman-Mountford NJ, Southward AJ (2006) Changes in the range of some common rocky shore species in Britain—a response to climate change? Hydrobiologia 555:241–251. doi:10.1007/s10750-005-1120-6

    Article  Google Scholar 

  • Ministry of the Environment (1978) Report of the marine organisms biological environment survey. http://www.biodic.go.jp/reports2/2nd/kaiiki_all/index.html. Accessed 21 Mar 2009 (in Japanese)

  • Ministry of the Environment (1988) Report of the marine organisms biological environment survey. http://www.biodic.go.jp/reports2/3rd/kaiikim/index.html. Accessed 21 Mar 2009 (in Japanese)

  • Moore P, Hawkins S, Thompson R (2007) Role of biological habitat amelioration in altering the relative responses of congeneric species to climate change. Mar Ecol Prog Ser 334:11–19. doi:10.3354/meps334011

    Article  Google Scholar 

  • Nakaoka M, Ito N, Yamamoto T, Okuda T, Noda T (2006) Similarity of rocky intertidal assemblages along the Pacific coast of Japan: effects of spatial scales and geographic distance. Ecol Res 21:425–435. doi:https://doi.org/410.1007/s11284-11005-10138-11286

    Article  Google Scholar 

  • Navarrete SA, Broitman B, Wieters EA, Finke GR, Venegas RM, Sotomayor A (2002) Recruitment of intertidal invertebrates in the Southeast Pacific: interannual variability and the 1997–1998 El Niño. Limnol Oceanogr 47:791–802

    Article  Google Scholar 

  • Ohgaki S, Takenouchi K, Hashimoto T, Nakai K (1999) Year-to-year changes in the rocky-shore malacofauna of Bansho Cape, Central Japan: rising temperature and increasing abundance of southern species. Benthos Res 54:47–58. http://www.journalarchive.jst.go.jp/jnlpdf.php?cdjournal=pbr1999&cdvol=54&noissue=2&startpage=47&lang=ja&from=jnltoc

    Article  Google Scholar 

  • Okutani T (2000) Marine mollusks in Japan. Tokai University Press, Tokyo

    Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669. doi:10.1146/annurev.ecolsys.37.091305.110100

    Article  Google Scholar 

  • Pettorelli N, Vik JO, Mysterud A, Gaillard JM, Tucker CJ, Stenseth NC (2005) Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol Evol 20:503–510. doi:10.1016/j.tree.2005.05.011

    Article  Google Scholar 

  • Pitt NR, Poloczanska ES, Hobday AJ (2010) Climate-driven range changes in Tasmanian intertidal fauna. Mar Freshw Res 61:963–970. doi:10.1071/mf09225

    Article  CAS  Google Scholar 

  • Poloczanska ES, Hawkins SJ, Southward AJ, Burrows MT (2008) Modeling the response of populations of competing species to climate change. Ecology 89:3138–3149. doi:10.1890/07-1169.1

    Article  Google Scholar 

  • Przeslawski R, Davis AR, Benkendorff K (2005) Synergistic effects associated with climate change and the development of rocky shore molluscs. Glob Change Biol 11:515–522. doi:10.1111/j.1365-2486.2005.00918.x

    Article  Google Scholar 

  • Raffaelli D, Hawkins S (1996) Intertidal ecology. Chapman & Hall, London

    Book  Google Scholar 

  • Rayssac N, Pernet F, Lacasse O, Tremblay R (2010) Temperature effect on survival, growth, and triacylglycerol content during the early ontogeny of Mytilus edulis and M. trossulus. Mar Ecol Prog Ser 417:183–191. doi:10.3354/meps08774

    Article  Google Scholar 

  • Rejmánek M, Richardson DM, Higgins SI, Pitcairn MJ, Grotkopp E (2005) Ecology of invasive plants: state of the art. In: Mooney HA, Mack RN, McNeely JA, Neville LE, Schei PJ, Waage JK (eds) Invasive alien species. Island Press, Washington, DC, pp 104–161

    Google Scholar 

  • Richardson AJ, Poloczanska ES (2008) Ocean science. Under-resourced, under threat. Science 320:1294–1295. doi:10.1126/science.1156129

    Article  CAS  Google Scholar 

  • Rivadeneira MM, Fernández M (2005) Shifts in southern endpoints of distribution in rocky intertidal species along the south-eastern Pacific coast. J Biogeogr 32:203–209

    Article  Google Scholar 

  • Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu QG, Casassa G, Menzel A, Root TL, Estrella N, Seguin B, Tryjanowski P, Liu CZ, Rawlins S, Imeson A (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453:353–357

    Article  CAS  Google Scholar 

  • Sagarin RD, Barry JP, Gilman SE, Baxter CH (1999) Climate-related change in an intertidal community over short and long time scales. Ecol Monogr 69:465–490. doi:10.1890/0012-9615(1999)069[0465:CRCIAI]2.0.CO;2

    Article  Google Scholar 

  • Sanford E (1999) Regulation of keystone predation by small changes in ocean temperature. Science 283:2095–2097

    Article  CAS  Google Scholar 

  • Schiel DR, Steinbeck JR, Foster MS (2004) Ten years of induced ocean warming causes comprehensive changes in marine benthic communities. Ecology 85:1833–1839

    Article  Google Scholar 

  • Southward AJ (1967) Recent changes in abundance of intertidal barnacles in south-west England: a possible effect of climatic deterioration. J Mar Biol Assoc UK 47:81–95

    Article  Google Scholar 

  • Southward AJ (1991) Forty years of changes in species composition and population density of barnacles on a rocky shore near Plymouth. J Mar Biol Assoc UK 71:495–513

    Article  Google Scholar 

  • Southward AJ, Crisp DJ (1954) Recent changes in the distribution of the intertidal barnacles Chthamalus stellatus Poli and Balanus balanoides L. in the British Isles. J Anim Ecol 23:163–177

    Article  Google Scholar 

  • Southward AJ, Hawkins SJ, Burrows MT (1995) Seventy years’ observations of changes in distribution and abundance of zooplankton and intertidal organisms in the western English Channel in relation to rising sea temperature. J Therm Biol 20:127–155

    Article  Google Scholar 

  • Thompson RC, Crowe TP, Hawkins SJ (2002) Rocky intertidal communities: past environmental changes, present status and predictions for the next 25 years. Environ Conserv 29:168–191. doi:10.1017/s0376892902000115

    Article  Google Scholar 

  • Tsujino M, Hori M, Okuda T, Nakaoka M, Yamamoto T, Noda T (2010) Distance decay of community dynamics in rocky intertidal sessile assemblages evaluated by transition matrix models. Popul Ecol 52:171–180. doi:10.1007/s10144-009-0150-8

    Article  Google Scholar 

  • Tuljapurkar S, Caswell H (1997) Structured-population models in marine, terrestrial, and freshwater systems. Chapman & Hall, New York

    Book  Google Scholar 

  • Underwood AJ (1979) The ecology of intertidal gastropods. Adv Mar Biol 16:111–210

    Article  Google Scholar 

  • Underwood AJ (1997) Experiments in ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Underwood AJ, Chapman MG (1998) Spatial analyses of intertidal assemblages on sheltered rocky shores. Aust J Ecol 23:138–157

    Article  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  Google Scholar 

  • Wethey DS, Woodin SA (2008) Ecological hindcasting of biogeographic responses to climate change in the European intertidal zone. Hydrobiologia 606:139–151. doi:10.1007/s10750-008-9338-8

    Article  Google Scholar 

  • Zacherl D, Gaines S, Lonhart S (2003) The limits to biogeographical distributions: insights from the northward range extension of the marine snail, Kelletia kelletii (Forbes, 1852). J Biogeogr 30:913–924. doi:10.1046/j.1365-2699.2003.00899.x

    Article  Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Prentice Hall, New Jersey

    Google Scholar 

Download references

Acknowledgments

Fabio Bulleri and anonymous reviewers gave very useful comments on the draft. Chris Norman corrected our English. Takeshi Kannda, Katsufumi Sato and many students helped with our field work. Yasuhiro Kuwahara identified some mollusks. Marine Science Center Abashiri, International Coastal Research Center (University of Tokyo), Seto Marine Biological Laboratory (Kyoto University), Nobeoka Marine Science Station (University of Miyazaki) and Sesoko Station (University of the Ryukyus) supported our stay. Local fishery cooperation permitted our surveys. Biodiversity Center of Japan (Ministry of the Environment) permitted us to utilize the malacofaunal data. Staff of Seikai National Fisheries Research Institute discussed the present study with us. The Japan Ministry of Education, Science, Sports, Culture and Technology gave financial supports. We are grateful for all the assistance. The present study complies with the current laws of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeo Kurihara.

Additional information

Communicated by F. Bulleri.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurihara, T., Takami, H., Kosuge, T. et al. Area-specific temporal changes of species composition and species-specific range shifts in rocky-shore mollusks associated with warming Kuroshio Current. Mar Biol 158, 2095–2107 (2011). https://doi.org/10.1007/s00227-011-1717-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-011-1717-4

Keywords

Navigation