Genetic heterogeneity among Eurytemora affinis populations in Western Europe

Abstract

Evolutionary diversification of the broadly distributed copepod sibling species complex Eurytemora affinis has been documented in the northern hemisphere. However, the fine scale geographic distribution, levels of genetic subdivision, evolutionary, and demographic histories of European populations have been less explored. To gain information on genetic subdivision and to evaluate heterogeneity among European populations, we analyzed samples from 8 locations from 58° to 45°N and 0° to 23°E, using 549 base pairs of the mitochondrial cytochrome oxidase subunit I (COI) gene. We discovered three distinct lineages of E. affinis in Western Europe, namely the East Atlantic lineage, the North Sea/English Channel (NSEC) lineage, and the Baltic lineage. These geographically separated lineages showed sequences divergence of 1.7–2.1%, dating back 1.9 million years (CI: 0.9–3.0 My) with no indication of isolation by distance. Genetic divergence in Europe was much lower than among North American lineages. Interestingly, genetic structure varied distinctively among the three lineages: the East Atlantic lineage was divided between the Gironde and the Loire populations, the NSEC lineage comprised one single population unit spanning the Seine, Scheldt and Elbe rivers and the third lineage was restricted to the Baltic Proper (Sweden). We revealed high haplotype diversity in the East Atlantic and the Baltic lineages, whereas in the NSEC lineage haplotype diversity was comparatively low. All three lineages showed signs of at least one demographic expansion event during Pleistocene glaciations that marked their genetic structure. These results provide a preliminary overview of the genetic structure of E. affinis in Europe.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Albaina A, Villate F, Uriarte I (2009) Zooplankton communities in two contrasting Basque estuaries (1999–2001): reporting changes associated with ecosystem health. J Plankton Res 31:739–752

    CAS  Article  Google Scholar 

  2. Alekseev V, Abramson N, Sukhikh N (2009) Introduction of sibling species to the ecosystem of the Baltic Sea. Doklady Biol Sci 429:544–547

    CAS  Article  Google Scholar 

  3. Appeltans W, Hannouti A, Van Damme S, Soetaert K, Vanthomme R, Tackx M (2003) Zooplankton in the Schelde estuary (Belgium The Netherlands). The distribution of Eurytemora affinis: effect of oxygen? J Plankton Res 25:1441–1445

    Article  Google Scholar 

  4. Avise JC (1998) Conservation genetics in the marine realm. J Hered 89:377–382

    Article  Google Scholar 

  5. Avise JC, Neigel JE, Arnold J (1984) Demographic influences on mitochondrial-DNA lineage survivorship in animal populations. J Mol Evol 20:99–105

    Google Scholar 

  6. Beyrend-Dur D, Souissi S, Devreker D, Winkler G, Hwang JS (2009) Life cycle traits of two transatlantic populations of Eurytemora affinis (Copepoda: Calanoida): salinity effects. J Plankton Res 31:713–728

    Article  Google Scholar 

  7. Bilton DT, Paula J, Bishop JDD (2002) Dispersal, genetic differentiation and speciation in estuarine organisms. Estuar Coast Shelf Sci 55:937–952

    Article  Google Scholar 

  8. Bucklin A, Kaartvedt S, Guarnieri M, Goswami U (2000) Population genetics of drifting (Calanus spp.) and resident (Acartia clausi) plankton in Norwegian fjords. J Plankton Res 22:1237–1251

    CAS  Article  Google Scholar 

  9. Burkill PH, Kendrall TF (1982) Production of the copepod Eurytemora affinis in the Bristol Channel. Mar Ecol Progr Ser 7:21–31

    Article  Google Scholar 

  10. Cailleaud K, Maillet G, Budzinski H, Souissi S, Forget-Leray J (2007) Effects of salinity and temperature on the expression of enzymatic biomarkers in Eurytemora affinis (Calanoida, Copepoda). Comp Biochem Physiol Part A Mol Integr Physiol 147:841–849

    CAS  Article  Google Scholar 

  11. Cailleaud K, Forget-Leray J, Peuhiet L et al (2009) Tidal influence on the distribution of hydrophobic organic contaminants in the Seine Estuary and biomarker responses on the copepod Eurytemora affinis. Environ Pollut 157:64–71

    CAS  Article  Google Scholar 

  12. Castel J (1995) Long-term changes in the population of Eurytemora affinis (Copepoda, Calanoida) in the Gironde estuary (1978–1992). Hydrobiologia 311:85–101

    Article  Google Scholar 

  13. Caudill CC, Bucklin A (2004) Molecular phylogeography and evolutionary history of the estuarine copepod, Acartia tonsa, on the Northwest Atlantic coast. Hydrobiologia 511:91–102

    Article  Google Scholar 

  14. Chen G, Hare MP (2008) Cryptic ecological diversification of a planktonic estuarine copepod, Acartia tonsa. Mol Ecol 17:1451–1468

    CAS  Article  Google Scholar 

  15. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    CAS  Article  Google Scholar 

  16. David V, Sautour B, Chardy P, Leconte M (2005) Long-term changes of the zooplankton variability in a turbid environment: the Gironde estuary (France). Estuar Coast Shelf Sci 64:171–184

    Article  Google Scholar 

  17. David V, Chardy P, Sautour B (2006) Fitting a predator-prey model to zooplankton time-series data in the Gironde estuary (France): Ecological significance of the parameters. Estuar Coast Shelf Sci 67:605–617

    Article  Google Scholar 

  18. David V, Sautour B, Chardy P (2007) The paradox between the long-term decrease of egg mass size of the calanoid copepod Eurytemora affinis and its long-term constant abundance in a highly turbid estuary (Gironde estuary, France). J Plankton Res 29:377–389

    Article  Google Scholar 

  19. Dawson AG (1992) Ice age earth: late quaternary geology and climate. Routledge, London

    Google Scholar 

  20. Delhez EJM (1996) Modelling the general circulation on the north-western European continental shelf in the perspective of interdisciplinary environmental studies. Bull Soc Roy Sci Liège 65:51–54

    CAS  Google Scholar 

  21. Delhez EJM, Deleersnijder E (2002) The concept of age in marine modelling: 2. Concentration distribution function in the English Channel and the North Sea. J Mar Syst 31:279–297

    Article  Google Scholar 

  22. Devreker D, Souissi S, Seuront L (2004) Development and mortality of the first naupliar stages of Eurytemora affinis (Copepoda, Calanoida) under different conditions of salinity and temperature. J Exp Mar Biol Ecol 303:31–46

    Article  Google Scholar 

  23. Devreker D, Souissi S, Forget-Leray J, Leboulenger F (2007) Effects of salinity and temperature on the post-embryonic development of Eurytemora affinis (Copepoda; Calanoida) from the Seine estuary: a laboratory study. J Plankton Res 29:117–133

    Article  Google Scholar 

  24. Devreker D, Souissi S, Molinero JC, Nkubito F (2008) Trade-offs of the copepod Eurytemora affinis in mega-tidal estuaries: insights from high frequency sampling in the Seine estuary. J Plankton Res 30:1329–1342

    Article  Google Scholar 

  25. Devreker D, Souissi S, Winkler G, Forget-Leray J, Leboulenger F (2009) Effects of salinity, temperature and individual variability on the reproduction of Eurytemora affinis (Copepoda; Calanoida) from the Seine estuary: a laboratory study. J Exp Mar Biol Ecol 368:113–123

    Article  Google Scholar 

  26. Dodson JJ, Tremblay S, Colombani F, Carscadden JE, Lecomte F (2007) Trans-Arctic dispersals and the evolution of a circumpolar marine fish species complex, the capelin (Mallotus villosus). Mol Ecol 16:5030–5043

    Article  Google Scholar 

  27. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  Google Scholar 

  28. Dur G, Souissi S, Devreker D, Ginot V, Schmitt FG, Hwang JS (2009) An individual-based model to study the reproduction of egg bearing copepods: application to Eurytemora affinis (Copepoda Calanoida) from the Seine estuary, France. Ecol Model 220:1073–1089

    Article  Google Scholar 

  29. Escaravage V, Soetaert K (1995) Secondary production of the brackish copepod communities and their contribution to the carbon fluxes in the Westernscheldt estuary (The Netherlands). Hydrobiologia 311:103–114

    Article  Google Scholar 

  30. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinforma 1:47–50

    CAS  Google Scholar 

  31. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  32. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299

    CAS  Google Scholar 

  33. Gasparini S, Castel J, Irigoien X (1999) Impact of suspended particulate matter on egg production of the estuarine copepod, Eurytemora affinis. J Mar Syst 22:195–205

    Article  Google Scholar 

  34. Gelembiuk GW, May GE, Lee CE (2006) Phylogeography and systematics of zebra mussels and related species. Mol Ecol 15:1033–1050

    CAS  Article  Google Scholar 

  35. GenBank, http://www.ncbi.nlm.nih.gov/Genbank/

  36. Ger KA, Teh SJ, Goldman CR (2009) Microcystin-LR toxicity on dominant copepods Eurytemora affinis and Pseudodiaptomus forbesi of the upper San Francisco Estuary. Sci Tot Environ 407:4852–4857

    CAS  Article  Google Scholar 

  37. Gorokhova E, Fagerberg T, Hansson S (2004) Predation by herring (Clupea harengus) and sprat (Sprattus sprattus) on Cercopagis pengoi in a western Baltic Sea bay. Ices J Mar Sci 61:959–965

    Article  Google Scholar 

  38. Grant WS, Bowen BW (1998) Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J Hered 89:415–426

    Article  Google Scholar 

  39. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. System Biol 59:307–321

    CAS  Article  Google Scholar 

  40. Gysels ES, Hellemans B, Pampoulie C, Volckaert FAM (2004) Phylogeography of the common goby, Pomatoschistus microps, with particular emphasis on the colonization of the Mediterranean and the North Sea. Mol Ecol 13:403–417

    CAS  Article  Google Scholar 

  41. Hansson S, Larsson U, Johansson S (1990) Selective predation by herring and mysids, and zooplankton community structure in a Baltic Sea coastal area. J Plankton Res 12:1099–1116

    Article  Google Scholar 

  42. Hirche HJ (1992) Egg production of Eurytemora affinis—effect of k-strategy. Estuar Coast Shelf Sci 35:395–407

    Article  Google Scholar 

  43. Hoelzel AR, Green A (1992) Analysis of population-level variation by sequencing PCR-amplified DNA. In: Hoelzel AR (ed) Molecular genetic analysis of populations: a practical approach. Oxford University Press, New York

    Google Scholar 

  44. Irigoien X, Castel J, Sautour B, Heip C (1993) In situ grazing activity of planktonic copepods in the Gironde Estuary. Cah Biol Mar 34:225–237

    Google Scholar 

  45. Jeppesen E, Sondergaard M, Pedersen AR et al (2007) Salinity induced regime shift in shallow brackish lagoons. Ecosystems 10:47–57

    CAS  Article  Google Scholar 

  46. Johannesson K, Andre C (2006) Life on the margin: genetic isolation and diversity loss in a peripheral marine ecosystem, the Baltic Sea. Mol Ecol 15:2013–2029

    CAS  Article  Google Scholar 

  47. Jolly MT, Jollivet D, Gentil F, Thiebaut E, Viard F (2005) Sharp genetic break between Atlantic and English Channel populations of the polychaete Pectinaria koreni, along the North coast of France. Heredity 94:23–32

    CAS  Article  Google Scholar 

  48. Jolly MT, Viard F, Gentil F, Thiebaut E, Jollivet D (2006) Comparative phylogeography of two coastal polychaete tubeworms in the Northeast Atlantic supports shared history and vicariant events. Mol Ecol 15:1841–1855

    CAS  Article  Google Scholar 

  49. Kimmel DG, Roman MR (2004) Long-term trends in mesozooplankton abundance in Chesapeake Bay, USA: influence of freshwater input. Mar Ecol Progr Ser 267:71–83

    Article  Google Scholar 

  50. Kimmel DG, Miller WD, Roman MR (2006) Regional scale climate forcing of mesozooplankton dynamics in Chesapeake Bay. Estuaries Coasts 29:375–387

    Google Scholar 

  51. Kimmerer W (2005) Long-term changes in apparent uptake of silica in the San Francisco estuary. Limnol Oceanogr 50:793–798

    CAS  Article  Google Scholar 

  52. Knowlton N (1993) Sibling species in the sea. Ann Rev Ecol System 24:189–216

    Article  Google Scholar 

  53. Knowlton N (2000) Molecular genetic analyses of species boundaries in the sea. Hydrobiologia 420:73–90

    CAS  Article  Google Scholar 

  54. Knowlton N, Weigt LA (1998) New dates and new rates for divergence across the Isthmus of Panama. Proc Roy Soc Lond Ser B Biol Sci 265:2257–2263

    Article  Google Scholar 

  55. Koljonen ML, Jansson H, Paaver T, Vasin O, Koskiniemi J (1999) Phylogeographic lineages and differentiation pattern of Atlantic salmon (Salmo salar) in the Baltic Sea with management implications. Can J Fish Aquat Sci 56:1766–1780

    Google Scholar 

  56. Köpcke B, Kausch H (1996) Distribution and varibility in abundance of Neomysis integer and Mesopodopsis slabberi in relation to environmental factors in the Elbe Estuary. Arch Hydrobiol Suppl 110:263–282

    Google Scholar 

  57. Kuhner MK (2006) lamarc 2.0: maximum likelihood and Bayesian estimation of population parameters. Bioinformatics 22:768–770

    CAS  Article  Google Scholar 

  58. Lecomte F, Dodson JJ, Georges S (2000) Impact de la pêcherie commerciale de Charlevoix sur les populations d’éperlans de l’estuaire moyen du Saint-Laurent, p. 47. Société de la Faune et des Parcs du Québec, Direction régionale de Québec, Québec

  59. Lee CE (1999a) Independent invasions of fresh water: comparison of sodium pumping ability among lineages of the copepod Eurytemora affinis. Am Zool 39:93

    Google Scholar 

  60. Lee CE (1999b) Rapid and repeated invasions of fresh water by the copepod Eurytemora affinis. Evolution 53:1423–1434

    Article  Google Scholar 

  61. Lee CE (2000) Global phylogeography of a cryptic copepod species complex and reproductive isolation between genetically proximate “populations”. Evolution 54:2014–2027

    CAS  Article  Google Scholar 

  62. Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391

    Article  Google Scholar 

  63. Lee CE, Frost BW (2002) Morphological stasis in the Eurytemora affinis species complex (Copepoda : Temoridae). Hydrobiologia 480:111–128

    CAS  Article  Google Scholar 

  64. Lee CE, Gelembiuk GW (2008) Evolutionary origins of invasive populations. Evol Appl 1:427–448

    Google Scholar 

  65. Lee CE, Remfert JL, Gelembiuk GW (2003) Evolution of physiological tolerance and performance during freshwater invasions. Integr Comp Biol 43:439–449

    Article  Google Scholar 

  66. Luttikhuizen PC, Drent J, Baker AJ (2003) Disjunct distribution of highly diverged mitochondrial lineage clade and population subdivision in a marine bivalve with pelagic larval dispersal. Mol Ecol 12:2215–2229

    CAS  Article  Google Scholar 

  67. Mallin MA, Paerl HW (1994) Planktonic trophic transfer in an estuary—seasonal, diel, and community structure effects. Ecology 75:2168–2184

    Article  Google Scholar 

  68. Mialet B, Azemar F, Maris T, Sossou C, Ruiz P, Lionard M, Van Damme S, Lecerf A, Muylaert K, Toumi N, Meire P, Tackx M (2010) Spatial spring distribution of the copepod Eurytemora affinis (Copepoda, Calanoida) in a restoring estuary, the Scheldt (Belgium). Estuar Coast Shelf Sci 88:116–124

    Article  Google Scholar 

  69. Michalec F-G, Souissi S, Dur G, Mahjoub M-S, Schmitt FG, Hwang J-S (2010) Differences in behavioral responses of Eurytemora affinis (Copepoda, Calanoida) reproductive stages to salinity variations. J Plankton Res 32:805–813

    Article  Google Scholar 

  70. Mouny P, Dauvin JC (2002) Environmental control of mesozooplankton community structure in the Seine estuary (English Channel). Oceanol Acta 25:13–22

    Article  Google Scholar 

  71. Mouny P, Dauvin JC, Bessineton C, Elkaim B, Simon S (1998) Biological components from the Seine estuary: first results. Hydrobiologia 374:333–347

    Article  Google Scholar 

  72. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  73. Nikula R, Strelkov P, Vainola R (2007) Diversity and trans-Arctic invasion history of mitochondrial lineages in the North Atlantic Macoma balthica complex (Bivalvia : Tellinidae). Evolution 61:928–941

    CAS  Article  Google Scholar 

  74. North EW, Houde ED (2003) Linking ETM physics, zooplankton prey, and fish early-life histories to striped bass Morone saxatilis and white perch M. americana recruitment. Mar Ecol Progr Ser 260:219–236

    Article  Google Scholar 

  75. Osinov A, Bernatchez L (1996) Atlantic and Danubean phylogenetic groupings of brown trout (Salmo trutta L.) complex: genetic divergence, evolution, and conservation. J Ichthyol 36:762–786

    Google Scholar 

  76. Peijnenburg K, Breeuwer JAJ, Pierrot-Bults AC, Menken SBJ (2004) Phylogeography of the planktonic chaetognath Sagitta setosa reveals isolation in European seas. Evolution 58:1472–1487

    Google Scholar 

  77. Peitsch A (1993) Difficulties in estimating mortality rates of Eurytemora affinis in the brackish water region of the Elbe estuary. Cah Biol Mar 34:215–224

    Google Scholar 

  78. Peitsch A, Koepcke B, Bernat N (2000) Long-term investigation of the distribution of Eurytemora affinis (Calanoida; Copepoda) in the Elbe Estuary. Limnologica 30:175–182

    Google Scholar 

  79. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    CAS  Article  Google Scholar 

  80. Provan J, Wattier RA, Maggs CA (2005) Phylogeographic analysis of the red seaweed Palmaria palmata reveals a Pleistocene marine glacial refugium in the English Channel. Mol Ecol 14:793–803

    CAS  Article  Google Scholar 

  81. Raymond M, Rousset F (1995) GENEPOP Version 1.2: population genetic software for exact test and ecumenism. J Hered 86:248–249

    Google Scholar 

  82. Remerie T, Vierstraete A, Weekers PHH, Vanfleteren JR, Vanreusel A (2009) Phylogeography of an estuarine mysid, Neomysis integer (Crustacea, Mysida), along the north-east Atlantic coasts. J Biogeogr 36:39–54

    Article  Google Scholar 

  83. Roman J, Palumbi SR (2004) A global invader at home: population structure of the green crab, Carcinus maenas, in Europe. Mol Ecol 13:2891–2898

    CAS  Article  Google Scholar 

  84. Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    CAS  Article  Google Scholar 

  85. Sautour B, Castel J (1995) Comparative spring distribution of zooplankton in three macrotidal European estuaries. Hydrobiologia 311:1–3

    Article  Google Scholar 

  86. Schluter D (2001) Ecology and the origin of species. Trends Ecol Evol 16:372–380

    Article  Google Scholar 

  87. Schneider S, Excoffier L (1999) Estimation of demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152:1079–1089

    CAS  Google Scholar 

  88. Simenstad C, Small L, McIntire C (1990) Consumption processes and food web structure in the Columbia River estuary. Progr Oceanogr 25:1–4

    Article  Google Scholar 

  89. Sirois P, Dodson J (2000) Influence of turbidity, food density and parasites on the ingestion and growth of larval rainbow smelt Osmerus mordax in an estuarine turbidity maximum. Mar Ecol Progr Ser 193:167–179

    Article  Google Scholar 

  90. Skelly DA, Chau K, Chang YM, Winkler G, Lee CE (in revision) Limits to range expansions into freshwater habitats: Physiological contrasts between sympatric invasive and noninvasive populations of the copepod Eurytemora affinis

  91. Sotka EE, Wares JP, Barth JA, Grosberg RK, Palumbi SR (2004) Strong genetic clines and geographical variation in gene flow in the rocky intertidal barnacle Balanus glandula. Mol Ecol 13:2143–2156

    CAS  Article  Google Scholar 

  92. Souissi A, Souissi S, Devreker D, Hwang JS (2010) Occurence of intersexuality in a laboratory culture of the copepod Eurytemora affinis from the Seine estuary (France). Mar Biol 157:851–861

    Article  Google Scholar 

  93. Tackx M, Irigoien X, Daro N et al (1995) Copepod feeding in the Western-Scheldt and the Gironde. Hydrobiologia 311:1–3

    Article  Google Scholar 

  94. Tackx MLM, Herman PJM, Gasparini S, Irigoien X, Billiones R, Daro MH (2003) Selective feeding of Eurytemora affinis (Copepoda, Calanoida) in temperate estuaries: model and field observations. Estuar Coast Shelf Sci 56:305–311

    Article  Google Scholar 

  95. Tackx MLM, De Pauw N, Van Mieghem R et al (2004) Zooplankton in the Scheldt estuary, Belgium and the Netherlands. Spatial and temporal patterns. J Plankton Res 26:133–141

    CAS  Article  Google Scholar 

  96. Verspoor E, McCarthy EM, Knox D (1999) The phylogeography of European Atlantic salmon (Salmo salar L.) based on RFLP analysis of the ND1/16sRNA region of the mtDNA. Biol J Linn Soc 68:129–146

    Google Scholar 

  97. Vuorinen I, Ranta E (1987) Dynamics of marine meso-zooplankton at Seili, northern Baltic sea, in 1967–1975. Ophelia 28:31–48

    Google Scholar 

  98. Winkler G, Dodson JJ, Bertrand N, Thivierge D, Vincent WF (2003) Trophic coupling across the St. Lawrence River estuarine transition zone. Mar Ecol Progr Ser 251:59–73

    Article  Google Scholar 

  99. Winkler G, Martineau C, Dodson JJ, Vincent WF, Johnson LE (2007) Trophic dynamics of two sympatric mysid species in an estuarine transition zone. Mar Ecol Progr Ser 332:171–187

    Article  Google Scholar 

  100. Winkler G, Dodson JJ, Lee CE (2008) Heterogeneity within the native range: population genetic analyses of sympatric invasive and noninvasive clades of the freshwater invading copepod Eurytemora affinis. Mol Ecol 17:415–430

    Article  Google Scholar 

  101. Wright S (1943) Isolation by distance. Genetics 28:114–139

    CAS  Google Scholar 

Download references

Acknowledgments

Funding for this research was provided by Seine-Aval, 2 conjoint projects: Fond France-Canada for Research and France-Québec #Program Samuel-De Champlain # 62.108 and the Research Federation FR1818. CP was funded by a postdoctoral grant from the University of Lille 1. We thank gratefully H. Gorokhova and S. Strake for providing samples from the Swedish Baltic and the Gulf of Riga, respectively. Special thanks are extended to S. Oesman, A. Cugat; P. Meire, Tom Maris, and M. Tackx; D. Devreker; B. Sautour and V. David for their help in sampling the Elbe, the Scheldt, the Seine, and the Gironde estuaries, respectively. We thank J. Cuguen to have generously accepted a zooplankton post doc (GW) in his botanical laboratory and P. Saumitou-Laprade for fruitful discussions. A. Courseaux and C. Godé provided excellent technical help in the laboratory. We thank C. E. Lee for providing E. affinis sequences for comparison and discussion purposes. We thank 2 anonymous reviewers for their greatly appreciated and helpful comments to improve this paper. Computational resources were provided by CRI-Lille 1 supported by the CNRS and Lille 1 University—Science and Technology. This paper is a contribution to the transversal action “genetics of copepods” within the Multidisciplinary Research Institute for Environemental Sciences (IRePSE) of Lille 1 University and Québec-Océan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gesche Winkler.

Additional information

Communicated by T. Reusch.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Winkler, G., Souissi, S., Poux, C. et al. Genetic heterogeneity among Eurytemora affinis populations in Western Europe. Mar Biol 158, 1841–1856 (2011). https://doi.org/10.1007/s00227-011-1696-5

Download citation

Keywords

  • River Mouth
  • Population Expansion
  • Haplotype Network
  • Mismatch Distribution
  • Glacial Refugium