Marine Biology

, Volume 158, Issue 7, pp 1439–1446 | Cite as

Effects of abiotic factors on growth and chemical defenses in cultivated clones of Laurencia dendroidea J. Agardh (Ceramiales, Rhodophyta)

  • Daniela Bueno Sudatti
  • Mutue Toyota Fujii
  • Silvana Vianna Rodrigues
  • Alexander Turra
  • Renato Crespo PereiraEmail author
Original Paper


Laurencia dendroidea shows high inter- and intrapopulation variability in the amount of the sesquiterpene elatol, caused by genetic variation as well as environmental factors. To test the independent effect of physical and nutritional conditions, the growth and the levels of elatol in L. dendroidea clones were evaluated under different conditions of temperature, salinity, irradiance, and culture medium in the laboratory. Growth of L. dendroidea was clearly affected by all these factors, but elatol levels were influenced only by temperature and salinity. Better conditions for growth did not produce a similar effect on elatol production in L. dendroidea, contradicting the carbon/nutrient balance and growth/differentiation balance models. On the contrary, severe conditions of temperature and salinity promoted a decrease in elatol levels, as predicted by the environmental stress model. Our results using clones indicated that abiotic factors clearly take part in fostering chemical variations observed in natural populations, in addition to genetic factors, and can promote differential susceptibility of plant specimens to natural enemies.


Secondary Metabolite Macroalgae Abiotic Factor Algal Biomass Chemical Defense 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to the Conselho Nacional de Desenvolvimento Cientıfico e Tecnológico (CNPq) and the Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) for financial support. RCP, MTF, and AT thank CNPq for their Research Productivity fellowships, and DBS thanks CNPq for her PhD fellowship.


  1. Abe T, Masuda M, Suzuki T, Suzuki M (1999) Chemical races in the red alga Laurencia nipponica (Rhodomelaceae, Ceramiales). Phycol Res 47:87–95CrossRefGoogle Scholar
  2. Agardh JG (1852) Species genera et ordines algarum, seu descriptiones succinctae specierum, generum et ordinum, quibus algarum regnum constituitur. Volumen secundum: algas florideas complectens. Part 3, fasc 1:701–786Google Scholar
  3. Amade P, Lemée R (1998) Chemical defence of the mediterranean alga Caulerpa taxifolia: variations in caulerpenyne production. Aq Toxicol 43:287–300CrossRefGoogle Scholar
  4. Amsler CD (2008) Algal chemical ecology. Springer, Berlin, p 313CrossRefGoogle Scholar
  5. Arnold TM, Tanner CE, Hatch WI (1995) Phenotypic variation in polyphenolic content of the tropical brown alga Lobophora variegata as function of nitrogen availability. Mar Ecol Prog Ser 123:177–183CrossRefGoogle Scholar
  6. Biber P, Irlandi E (2006) Temporal and spatial dynamics of macroalgal communities along an anthropogenic salinity gradient in Biscayne Bay (Florida, USA). Aq Bot 85:65–77CrossRefGoogle Scholar
  7. Blunt JW, Copp BR, Hu W, Munro MH, Northcote PT, Prinsep MR (2009) Marine natural products. Nat Prod Rep 26:170–244CrossRefGoogle Scholar
  8. Breeman AM (1988) Relative importance of temperature and other factors in determining geographic boundaries of seaweeds: experimental and phenological evidence. Helgol Wiss Meeresunters 42:199–241CrossRefGoogle Scholar
  9. Connam S, Deslandes E, Gall EA (2007) Influence of day-night and tidal cycles on phenol content and antioxidant capacity in three temperate intertidal brown seaweeds. J Exp Mar Bio Ecol 349:359–369CrossRefGoogle Scholar
  10. Cronin G (2001) Resource allocation in seaweeds and marine invertebrates: chemical defense patterns in relation to defense theories. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC Press, Boca Raton, pp 325–353CrossRefGoogle Scholar
  11. Cronin G, Hay ME (1996a) Effects of light and nutrient availability on the growth, secondary chemistry, and resistance to herbivory of two brown seaweeds. Oikos 77:93–106CrossRefGoogle Scholar
  12. Cronin G, Hay ME (1996b) Susceptibility to herbivores depends on recent history of both the plant and animal. Ecology 17:1531–1543CrossRefGoogle Scholar
  13. Cronin G, Hay ME (1996c) Within-plant variation in seaweed palatability and chemical defenses: optimal defense theory versus the growth-differentiation balance hypothesis. Oecologia 105:361–368CrossRefGoogle Scholar
  14. Cruz Adames VM, Ballantine DL (1996) Asexual reproduction in Laurencia poiteaui (Rhodomelaceae, Rhodophyta). Bot Mar 39:75–78CrossRefGoogle Scholar
  15. Da Gama BAP, Pereira RC, Soares AR, Teixeira VL, Yoneshigue-Valentin Y (2003) Is the mussel test a good indicator of antifouling activity? A comparison between laboratory and field assays. Biofouling 19:161–169CrossRefGoogle Scholar
  16. Davison IR (1991) Environmental effects on algal photosynthesis: temperature. J Phycol 27:2–8CrossRefGoogle Scholar
  17. Edwards P (1970) Illustrated guide to the seaweeds and seagrasses in the vicinity of Porto Aransas, Texas. Contrib Mar Sci 15:1–228Google Scholar
  18. Fujii MT (1998) Estudos morfológicos, quimiotaxonômicos e citogenéticos em quatro espécies selecionadas de Laurencia (Ceramiales, Rhodophyta) do litoral brasileiro. Dissertation, Universidade Estadual Paulista (UNESP), Rio Claro, 173 ppGoogle Scholar
  19. Henery ML, Wallis IR, Stone C, Foley WJ (2008) Methyl jasmonate does not induce changes in Eucalyptus grandis leaves that alter the effect of constitutive defenses on larvae of a specialist herbivore. Oecologia 156:847–859CrossRefGoogle Scholar
  20. Howard BM, Nonomura AM, Fenical W (1980) Chemotaxonomy in marine algae: secondary metabolite synthesis by Laurencia in unialgal culture. Biochem Syst Ecol 8:329–336CrossRefGoogle Scholar
  21. Ilvessalo H, Tuomi J (1989) Nutrient availability and accumulation of phenolic compounds in the brown alga Fucus vesiculosus. Mar Biol 101:115–119CrossRefGoogle Scholar
  22. Jormalainen V, Honkanen T (2008) Macroalgal chemical defenses and their roles in structuring temperate marine communities. In: Amsler CD (ed) Algal chemical ecology. Springer, Berlin, pp 59–90Google Scholar
  23. Kamiya M, Nishio T, Yokoyama A, Yatsuya K, Nishigaki T, Yoshikawa S, Ohki K (2010) Seasonal variation of phlorotannin in sargassacean species from the coast of the Sea of Japan. Phycol Res 58:53–61CrossRefGoogle Scholar
  24. Kawai H, Motomura T, Okuda K (2005) Isolation and purification techniques for macroalgae. In: Andersen RA (ed) Algal culturing techniques. Academic Press, London, pp 133–143Google Scholar
  25. Kirst GO (1990) Salinity tolerance of eukaryotic marine algae. Annu Rev Plant Physiol Plant Mol Biol 41:21–53CrossRefGoogle Scholar
  26. König GM, Wright AD (1997) Laurencia rigida: chemical investigations of its antifouling dichloromethane extract. J Nat Prod 60:967–970CrossRefGoogle Scholar
  27. Kraan S, Barrington KA (2005) Commercial farming of Asparagopsis armata (Bonnemaisoniceae, Rhodophyta) in Ireland, maintenance of an introduced species? J Appl Phycol 17:103–110CrossRefGoogle Scholar
  28. Kuwano K, Matsuka S, Kono S, Ninomiya M, Onishi J, Saga N (1998) Growth and the content of laurinterol and debromolaurinterol in Laurencia okamurae (Ceramiales, Rhodophyta). J Appl Phycol 10:9–14CrossRefGoogle Scholar
  29. Lobban CS, Harrison PJ (1994) Seaweed ecology and physiology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  30. Lu I, Sung M, Lee T (2006) Salinity stress and hydrogen peroxide regulation of antioxidant defense system in Ulva fasciata. Mar Biol 150:1–15CrossRefGoogle Scholar
  31. Luning K (1990) Seaweeds: their environment, biogeography, and ecophysiology. Wiley, New York, p 527Google Scholar
  32. Martí R, Uriz MJ, Turon X (2004) Seasonal and spatial variation of species toxicity in Mediterranean seaweed communities: correlation to biotic and abiotic factors. Mar Ecol Prog Ser 282:73–85CrossRefGoogle Scholar
  33. Masuda M, Abe T, Sato S (1997) Diversity of halogenated secondary metabolites in the red alga Laurencia nipponica (Rhodomelaceae, Ceramiales). J Phycol 33:196–208CrossRefGoogle Scholar
  34. Meyer KD, Paul VJ (1992) Intra-plant variation in secondary metabolite concentration in three species of Caulerpa (Chlorophyta: Caulerpales) and its effects on herbivorous fishes. Mar Ecol Prog Ser 62:249–257CrossRefGoogle Scholar
  35. Nash R, Rindi F, Guiry MD (2005) Optimum conditions for cultivation of the Trailliella phase of Bonnemaisonia hamifera Hariot (Bonnemaisoniales, Rhodophyta), a candidate species for secondary metabolite production. Bot Mar 48:257–265CrossRefGoogle Scholar
  36. Nishihara GN, Terada R, Noro T (2004) Photosynthesis and growth rates of Laurencia brongniartii J. Agardh (Rhodophyta, Ceramiales) in preparation for cultivation. J Appl Phycol 16:303–308CrossRefGoogle Scholar
  37. Oliveira EC, Paula EJ, Plastino EM, Petti R (1996) Metodologias para cultivo de algas em laboratório. In: Ferrario M, Sar E (eds) Macroalgas de Interes Económico: Cultivo, Manejo y Industrialización. Universidad de La Plata, Argentina, pp 175–198Google Scholar
  38. Palma R, Edding M, Rovirosa J, San-Martín A, Argandon VH (2004) Effect of photon flux density and temperature on the production of halogenated monoterpenes by Plocamium cartilagineum (Plocamiaceae, Rhodophyta). Z Naturforsch C 59c:679–683CrossRefGoogle Scholar
  39. Pavia H, Brock E (2000) Extrinsic factors influencing phlorotannin production in the brown alga Ascophyllum nodosum. Mar Ecol Prog Ser 193:285–294CrossRefGoogle Scholar
  40. Pavia H, Toth GB (2000) Influence of light and nitrogen on the phlorotannin content of the brown seaweeds Ascophyllum nodosum and Fucus vesiculosus. Hydrobiologia 440:299–305CrossRefGoogle Scholar
  41. Pavia H, Toth GB (2008) Macroalgal models in testing and extending defense theories. In: Amsler CD (ed) Algal chemical ecology. Springer, Berlin, pp 147–172CrossRefGoogle Scholar
  42. Pavia H, Cervin G, Lindgren A, Åberg P (1997) The effect of UV-B radiation and simulated herbivory on the production of phlorotannins in the brown seaweed Ascophyllum nodosum. Mar Ecol Prog Ser 157:139–146CrossRefGoogle Scholar
  43. Pavia H, Toth G, Åberg P (1999) Trade-offs between phlorotannin production and annual growth in natural populations of the brown seaweed Ascophyllum nodosum. J Ecol 87:761–771CrossRefGoogle Scholar
  44. Peckol P, Krane JM, Yates JL (1996) Interactive effects of inducible defense and resource availability on pholorotannins in the north Atlantic brown alga Fucus vesiculosus. Mar Ecol Prog Ser 138:209–217CrossRefGoogle Scholar
  45. Pedersen A (1984) Studies on phenol content and heavy metal uptake in fucoids. Hydrobiologia 116(117):498–504CrossRefGoogle Scholar
  46. Pereira RC, Da Gama BAP, Teixeira VL, Yoneshigue-Valentin Y (2003) Ecological roles of natural products from the Brazilian red seaweed Laurencia obtusa. Braz J Biol 63:665–672CrossRefGoogle Scholar
  47. Puglisi MP, Paul VJ (1997) Intraspecific variation in the red alga Portieria hornemannii: monoterpene concentrations are not influenced by nitrogen or phosphorus enrichment. Mar Biol 128:161–170CrossRefGoogle Scholar
  48. Reichardt PB, Chapin FS, Bryant JP, Mattes BR, Clausen TP (1991) Carbon/nutrient balance as a predictor of plant defense in Alaskan balsam poplar: potential importance of metabolite turnover. Oecologia 88:401–406CrossRefGoogle Scholar
  49. Rhoades DF (1979) Evolution of plant chemical defense against herbivores. In: Rosenthal GA, Janzen DH (eds) Herbivores: their interaction with secondary plant metabolites. Academic Press, New York, pp 3–54Google Scholar
  50. Rhoades DF (1985) Offensive–defensive interactions between insects and plants: their relevance in herbivore population dynamics and ecological theory. Am Nat 125:205–233CrossRefGoogle Scholar
  51. Robaina RR, Garciajimenez P, Luque A (1992) The growth-pattern and structure of callus from the red alga Laurencia sp. (Rhodophyta, Ceramiales) compared to shoot regeneration. Bot Mar 35:267–272CrossRefGoogle Scholar
  52. Rosic N, Momcilovic I, Kovacevic N, Grubišić D (2006) Genetic transformation of Rhamnus fallax and hairy roots as a source of anthraquinones. Biol Plant 50:514–518CrossRefGoogle Scholar
  53. Shadkami F, Helleur RJ, Cox RM (2007) Profiling secondary metabolites of needles of ozone-fumigated white pine (Pinus strobus) clones by thermally assisted hydrolysis/methylation GC/MS. J Chem Ecol 33:1467–1476CrossRefGoogle Scholar
  54. Sudatti DB, Rodrigues SV, Pereira RC (2006) Quantitative GC-ECD analysis of halogenated metabolites: determination of surface and within-thallus elatol of Laurencia obtusa. J Chem Ecol 32:835–843CrossRefGoogle Scholar
  55. Sudatti DB, Rodrigues SV, Coutinho R, da Gama BA, Salgado LT, Amado Filho GM, Pereira RC (2008) Transport and defensive role of elatol at the surface of the red seaweed Laurencia obtusa (Ceramiales, Rhodophyta). J Phycol 44:584–591CrossRefGoogle Scholar
  56. Vairappan CS (2003) Potent antibacterial activity of halogenated metabolites from Malaysian red algae, Laurencia majuscula (Rhodomelaceae, Ceramiales). Biomol Eng 20:255–259CrossRefGoogle Scholar
  57. Van Alstyne KL, McCarthy JJ III, Hystead CL, Kearns LJ (1999) Phlorotannin allocation among tissues of Northeast Pcific kelps and rockweeds. J Phycol 35:483–492CrossRefGoogle Scholar
  58. Veiga-Santos P, Rocha K, Santos A, Ueda-Nakamura T, Dias Filho B, Silva S, Sudatti DB, Bianco EM, Pereira RC, Nakamura C (2010) Antitrypanosomal activity of Elatol isolated from red seaweed Laurencia dendroidea. Parasitology 137:1661–1670CrossRefGoogle Scholar
  59. Wright JT, de Nys R, Steinberg PD (2000) Geographic variation in halogenated furanones from the red alga Delisea pulchra and associated herbivores and epiphytes. Mar Ecol Prog Ser 207:227–241CrossRefGoogle Scholar
  60. Yates JL, Peckol P (1993) Effects of nutrient availability and herbivory on polyphenolics in the seaweed Fucus vesiculosus. Ecology 74:1757–1766CrossRefGoogle Scholar
  61. Yokoya NS (2000) Apical callus formation and plant regeneration controlled by plant growth regulators on axenic culture of the red alga Gracilariopsis tenuifrons (Gracilariales, Rhodophyta). Phycol Res 48:133–142CrossRefGoogle Scholar
  62. Yokoya NS, Kakita H, Obika H, Kitamura T (1999) Effects of environmental factors and plant growth regulators on growth of the red alga Gracilaria vermiculophylla from Shikoku Island, Japan. Hydrobiologia 398:339–347CrossRefGoogle Scholar
  63. Zangerl AR, Bazzaz FA (1992) Theory and pattern in plant defense allocation. In: Fritz R, Simms EL (eds) Plant resistance to herbivores and pathogens, ecology, evolution and genetics. University of Chicago Press, Chicago, pp 363–392Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Daniela Bueno Sudatti
    • 1
  • Mutue Toyota Fujii
    • 2
  • Silvana Vianna Rodrigues
    • 3
  • Alexander Turra
    • 4
  • Renato Crespo Pereira
    • 1
    Email author
  1. 1.Departamento de Biologia Marinha, Instituto de BiologiaUniversidade Federal Fluminense (UFF)Niterói, Rio de JaneiroBrazil
  2. 2.Departamento de FicologiaInstituto de BotânicaSão PauloBrazil
  3. 3.Departamento de Química AnalíticaUniversidade Federal FluminenseNiterói, Rio de JaneiroBrazil
  4. 4.Departamento de Oceanografia Biológica, Instituto OceanográficoUniversidade de São, PauloSão PauloBrazil

Personalised recommendations