Skip to main content

Populations of the Sydney rock oyster, Saccostrea glomerata, vary in response to ocean acidification

Abstract

Acidifying oceans are predicted to fundamentally alter marine ecosystems. Over the next century, acute studies suggest that the impacts of climate change on marine organisms and ecosystems may be catastrophic. To date, however, little is known about whether the response of marine organisms varies within a species and whether this provides a potential “adaptive capacity”. Here, we show that selectively bred lines of the ecologically and economically important estuarine mollusc, the Sydney rock oyster Saccostrea glomerata, are more resilient to ocean acidification than the wild populations. When reared at elevated pCO2, we found a 25% reduction in shell growth of the selectively bred population of the Sydney rock oyster, Saccostrea glomerata, compared to a 64% reduction in shell growth of wild populations. This study shows that there are significantly different sensitivities to ocean acidification even within the same species, providing preliminary evidence that selective breeding may be a solution for important aquaculture industries to overcome the future effects of ocean acidification.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Alvarado-Alvarez R, Gould MC, Stephano JL (1996) Spawning, in vitro maturation, and changes in oocyte electrophysiology induced by serotonin in Tivela stultorum. Biol Bull 190:322–328

    CAS  Article  Google Scholar 

  • Bamber RN (1987) The effects of acidic sea water on young carpet-shell clams Venerupis decussata (L.) (Mollusca: Veneracea). J Exp Mar Biol Ecol 108:241–260

    CAS  Article  Google Scholar 

  • Bamber RN (1990) The effects of acidic seawater on three species of lamellibranch mollusc. J Exp Mar Biol Ecol 143(3):181–191

    Article  Google Scholar 

  • Bayne BL, Svensson S, Nell JA (1999) The physiological basis for faster growth in the Sydney rock oyster, Saccostrea commercialis. Biol Bull 197:377–387

    Article  Google Scholar 

  • Bellerby RGJ, Schulz KG, Riebesell U, Neill C, Heegaard E, Johannessen T, Brown KR (2008) Marine ecosystem community carbon and nutrient uptake stoichiometry under varying ocean acidification during the PeECE III experiment. Biogeosciences 5:1517–1527

    CAS  Article  Google Scholar 

  • Berge JA, Bjerkeng B, Pettersen O, Schaanning MT, Øxnevad S (2006) Effects of increased sea water concentrations of CO2 on growth of the bivalve Mytilus edulis L. Chemosphere 62:6814–6817

    Article  Google Scholar 

  • Berteaux D, Reale D, McAdam AG, Boutin S (2004) Keeping pace with fast climate change: can Arctic life count on evolution? Integr Comp Biol 44:140–151

    Article  Google Scholar 

  • Bibby R, Widdicombe S, Parry H, Spicer J, Pipe R (2008) Effects of ocean acidification on the immune response of the blue mussel Mytilus edulis. Aquat Biol 2:67–74

    Article  Google Scholar 

  • Bijma J, Spero HJ, Lea DW (1999) Reassessing foraminiferal stable isotope geochemistry: impact of the oceanic carbonate system (experimental results). In: Fischer G, Wefer G (eds) Use of proxies in paleoceanography: examples from the south Atlantic. Springer, Berlin, pp 489–512

    Google Scholar 

  • Butler JN (1982) Carbon dioxide equilibria and their applications. Addison-Wesley Publishing Company, New York, pp 1–259

    Google Scholar 

  • Byrne M, Ho M, Selvakumaraswamy P, Nguyen HD, Dworjanyn SA, Davis AR (2009) Temperature, but not pH, compromises sea urchin fertilisation and early development under near-future climate change scenarios. P Roy Soc Lond B: Bio 276:1183–1888

    Article  Google Scholar 

  • Byrne M, Soars NA, Ho MA, Wong E, McElroy D, Selvakumaraswamy P, Dworjanyn SA, Davis AR (2010) Fertilization in a suite of coastal marine invertebrates from SE Australia is robust to near-future ocean acidification. Mar Biol 157(9):2061–2069

    Article  Google Scholar 

  • Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365

    CAS  Article  Google Scholar 

  • Collins S, Bell G (2004) Phenotypic consequences of 1000 generations of selection at elevated CO2 in a green alga. Nature 431:566–569

    CAS  Article  Google Scholar 

  • Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Ann Rev Mar Sci 1:169–192

    Article  Google Scholar 

  • Dove MC, Sammut J (2007a) Impacts of estuarine acidification on survival, growth of Sydney rock oysters Saccostrea glomerata (Gould 1850). J Shellfish Res 26(2):519–527

    Article  Google Scholar 

  • Dove MC, Sammut J (2007b) Histological and feeding response of Sydney rock oysters, Saccostrea glomerata, to acid sulfate soil outflows. J Shellfish Res 26(2):509–518

    Article  Google Scholar 

  • Dupont S, Havenhand J, Thorndyke W, Peck L, Thorndyke M (2008) Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. Mar Ecol Prog Ser 373:285–294

    CAS  Article  Google Scholar 

  • Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432

    CAS  Article  Google Scholar 

  • Findlay HS, Kendall MA, Spicer JI, Widdicombe S (2009) Future high CO2 in the intertidal may compromise adult barnacle Semibalanus balanoides survival and embryonic development rate. Mar Ecol Prog Ser 389:193–202

    Article  Google Scholar 

  • Gao K, Aruga Y, Asada K, Ishihara T, Akano T, Kiyohara M (1993) Calcification in the articulated coralline alga Corallina pulilifera with special reference to the effect of elevated CO2 concentration. Mar Biol 117:129–132

    CAS  Article  Google Scholar 

  • Gazeau F, Quiblier C, Jansen JM, Gattuso J-P, Middelburg JJ, Heip C, Carlo HR (2007) Impact of elevated CO2 on shellfish calcification. Geophys Res Lett 34(7):L07603. doi:10.1029/2006GL028554

    Article  Google Scholar 

  • Gazeau F, Gattuso J-P, Dawber C, Pronker AE, Peene F, Peene J, Heip CHR, Middelburg JJ (2010) Effect of ocean acidification on the early life stages of the blue mussel (Mytilus edulis). Biogeosci Discuss 7:2927–2947

    Article  Google Scholar 

  • Gooding RA, Harley CDG, Tang E (2009) Elevated water temperature and carbon dioxide concentration increase the growth of a keystone echinoderm. PNAS 106(23):9316–9321

    CAS  Article  Google Scholar 

  • Gorman HE, Nager RG (2004) Prenatal development conditions have long-term effects on offspring fecundity. Proc R Soc Lond B 271:1923–1928

    Article  Google Scholar 

  • Gran G (1952) Determination of the equivalence point in potentiometric titrations–Part II. The Analyst 77:661–671

    CAS  Article  Google Scholar 

  • Green MA, Jones ME, Boudreau CL, Moore RL, Westman BA (2004) Dissolution mortality of juvenile bivalves in coastal marine deposits. Limnol Oceanogr 49(3):727–734

    Article  Google Scholar 

  • Gutowska MA, Pörtner HO, Melzner F (2008) Growth and calcification in the cephalopod Sepia officinalis under elevated seawater pCO2. Mar Ecol-Prog Ser 373:303–309

    CAS  Article  Google Scholar 

  • Havenhand JN, Schlegel P (2009) Near future levels of ocean acidification do not affect sperm motility and fertilization kinetics in the oyster Crassostrea gigas. Biogeosci Discuss 6:4573–4586

    Article  Google Scholar 

  • Havenhand JN, Buttler FR, Thorndyke MC, Williamson JE (2008) Near-future levels of ocean acidification reduce fertilization success in a sea urchin. Curr Biol 18(15):R651–R652

    CAS  Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Corals reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    CAS  Article  Google Scholar 

  • Hofmann GE, O’Donnell MJ, Todgham AE (2008) Using functional genomics to explore the effects of ocean acidification on calcifying marine organisms. Mar Ecol Prog Ser 373:219–225

    CAS  Article  Google Scholar 

  • Iglesias-Rodriguez MD, Halloran PR, Rickaby REM, Hall IR, Colmenero-Hidalgo E, Gittins JR, Green DRH, Tyrrell T, Gibbs SJ, von Dassow P, Rehm E, Armbrust EV, Boessenkool KP (2008) Phytoplankton calcification in a high-CO2 world. Science 320:336–340

    CAS  Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) Climate Change (2001) Impacts, adaptations and vulnerability. Cambridge University Press, New York

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) Climate Change (2007) Synthesis report. Cambridge University Press, New York

    Google Scholar 

  • Jansen JM, Pronker AE, Kube S, Sokolowski A, Sola JC, Marquiegui MA, Schiedek D, Bonga SW, Wolowicz M, Hummel H (2007) Geographic and seasonal patterns and limits on the adaptive response to temperature of European Mytilus spp. And Macoma balthica populations. Oecologia 154:23–34

    Article  Google Scholar 

  • Kleypas JA, Buddemeier RW, Archer D, Gattuso J-P, Langdon C, Opdyke BN (2005) Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research. Report on workshop held 18–20 April 2005, sponsored by NSF, NOAA, and the US Geological Survey, St. Petersburg, FL

  • Kochevar RE, Childress JJ (1996) Carbonic anhydrase in deep-sea chemoautotrophic symbioses. Mar Biol 125:375–383

    CAS  Article  Google Scholar 

  • Kurihara H (2008) Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar Ecol Prog Ser 373:275–284

    CAS  Article  Google Scholar 

  • Kurihara H, Ishimatsu A (2008) Effects of high CO2 seawater on the copepod (Acartia tsuensis) through all life stages and subsequent generations. Mar Pollut Bull 56(6):1086–1090

    CAS  Article  Google Scholar 

  • Kurihara H, Shirayama Y (2004) Effects of increased atmospheric CO2 on sea urchin early development. Mar Ecol Prog Ser 274:161–169

    Article  Google Scholar 

  • Kurihara H, Kato S, Ishimatsu A (2007) Effects of increased seawater pCO2 on early development of the oyster Crassostrea gigas. Aquat Biol 1:91–98

    CAS  Article  Google Scholar 

  • Kurihara H, Asai T, Kato S, Ishimatsu A (2008) Effects of elevated pCO2 on early development in the mussel Mytilus galloprovincialis. Aquat Biol 4:225–233

    Article  Google Scholar 

  • Langdon C, Atkinson MJ (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys Res 110(9) Art. No. C09S07

  • Langdon C, Takahashi T, Sweeney C, Chipman D, Goddard J, Marubini F, Aceves H, Barnett H, Atkinson MJ (2000) Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Glob Biogeochem Cy 14(2):639–654

    CAS  Article  Google Scholar 

  • Langenbuch M, Pörtner HO (2004) High sensitivity to chronically elevated CO2 levels in a eurybathic marine sipunculid. Aquat Toxicol 70:743–750

    Article  Google Scholar 

  • Langer G, Geisen M, Baumann K-H, Kläs J, Riebesell U, Thoms S, Young JR (2006) Species-specific responses of calcifying algae to changing seawater carbonate chemistry. Geochem Geophy Geosy 7(9):Q09006. doi:10.1029/2005GC001227

    Article  Google Scholar 

  • Lannan JE (1980) Broodstock management of Crassostrea gigas I. Genetic and environmental variation in survival in the larval rearing system. Aquaculture 21:323–336

    Article  Google Scholar 

  • Lannig G, Eilers S, Pörtner HO, Sokolova IM, Bock C (2010) Impact of ocean acidification on energy metabolism of oyster, Crassostrea gigas—changes in metabolic pathways and thermal response. Mar Drugs 8:2318–2339

    CAS  Article  Google Scholar 

  • Leclercq N, Gattuso J-P, Jaubert J (2000) CO2 partial pressure controls the calcification rate of a coral community. Glob Change Biol 6:329–334

    Article  Google Scholar 

  • Martin S, Gattuso J-P (2009) Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Glob Change Biol 15:2089–2100

    Article  Google Scholar 

  • McDonald MR, McClintock JB, Amsler CD, Rittschof D, Angus RA, Orihuela B, Lutostanski K (2009) Effects of ocean acidification over the life history of the barnacle Amphibalanus amphitrite. Mar Ecol Prog Ser 385:179–187

    CAS  Article  Google Scholar 

  • Medakovic D (2000) Carbonic anhydrase activity and biomineralization process in embryos, larvae and adult blue mussels Mytilus edulis. L Helgol Mar Res 54:1–6

    Article  Google Scholar 

  • Medakovic D, Lucu C (1994) Distribution of carbonic anhydrase in larval and adult mussels Mytilus edulis Linnaeus. Period Biol 96:452–454

    CAS  Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RN (1973) Measurement of apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

    CAS  Article  Google Scholar 

  • Michaelidis B, Ouzounts C, Paleras A, Pörtner H-O (2005) Effects of long-term moderate hypercapnia on acid–base balance and growth rate in marine mussels Mytilus galloprovincialis. Mar Ecol Prog Ser 293:109–118

    Article  Google Scholar 

  • Miller AW, Reynolds AC, Sobrino C, Riedel GF (2009) Shellfish face uncertain future in high CO2 world: influence of acidification on oyster larvae calcification and growth in estuaries. Plus One 4(5):1–8

    Article  Google Scholar 

  • Munday PL, Donelson JM, Dixson DL, Endo GGK (2009) Effects of ocean acidification on the early life history of a tropical marine fish. P R Soc B 276:3275–3283

    CAS  Article  Google Scholar 

  • Nell JA, Sheridan AK, Smith IR (1996) Progress in a Sydney rock oyster, Saccostrea comercialis (Iredale and Roughley), breeding program. Aquaculture 144:295–302

    Article  Google Scholar 

  • Nell JA, Smith IR, McPhee CC (2000) The Sydney rock oyster Saccostrea glomerata (Gould 1850) breeding programme: progress and goals. Aquacult Res 31:45–49

    Article  Google Scholar 

  • Newton K, Peters R, Raftos D (2004) Phenoloxidase and QX disease resistance in Sydney rock oysters (Saccostrea glomerata). Dev Comp Immunol 28:565–569

    CAS  Article  Google Scholar 

  • Orr JC, Fabry VJ, Laurent Aumont O, Bopp Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the 21st century and its impact on calcifying organisms. Nature 437(29):681–686

    CAS  Article  Google Scholar 

  • Parker LM, Ross PM, O’Connor WA (2009) The effect of ocean acidification and temperature on the fertilization and embryonic development of the Sydney rock oyster Saccostrea glomerata (Gould 1850). Glob Change Biol 15:2123–2136

    Article  Google Scholar 

  • Parker LM, Ross PM, O’Connor WA (2010) Comparing the effect of elevated pCO2 and temperature on the fertilization and early development of two species of oysters. Mar Biol. doi:10.1007/s00227-010-1508-3

  • Pörtner H-O (2008) Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar Ecol Prog Ser 373:203–217

    Article  Google Scholar 

  • Przeslawski R, Webb AR (2009) Natural variation in larval size and developmental rate of the northern Quahog Mercenaria mercenaria and associate effects on larval and juvenile fitness. J Shellfish Res 28(3):505–510

    Article  Google Scholar 

  • Reynaud S, Leclercq N, Romaine-Lioud S, Ferrier C, Jaubert J, Gattuso J-P (2003) Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Glob Change Biol 9:1660–1668

    Article  Google Scholar 

  • Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe R, Morel FMM (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–367

    CAS  Article  Google Scholar 

  • Ries JB, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37(12):1131–1134

    CAS  Article  Google Scholar 

  • Rost B, Zondervan I, Wolf-Gladrow D (2008) Sensitivity of phytoplankton to future changes in ocean carbonate chemistry: current knowledge, contradictions and research directions. Mar Ecol Prog Ser 373:227–237

    CAS  Article  Google Scholar 

  • Seibel BA, Walsh PJ (2001) Potential impacts of CO2 injection on deep-sea biota. Science 294:319–320

    CAS  Article  Google Scholar 

  • Seibel BA, Walsh PJ (2003) Biological impacts of deep-sea carbon dioxide injection inferred from indices of physiological performance. J Exp Biol 206:641–650

    CAS  Article  Google Scholar 

  • Siegenthaler U, Stocker TF, Monnin E, Luethi D, Schwander J, Stauffer B, Raynaud D, Barnola J-M, Fischer H, Masson-Delmotte V, Jouzel J (2005) Stable carbon cycle-climate relationship during the late Pleistocene. Science 310:1313–1317

    CAS  Article  Google Scholar 

  • Society Royal (2005) Ocean acidification due to increasing atmospheric carbon dioxide. Policy Document 12/05. The Royal Society, London, p 66

    Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. WH Freeman and Company, New York, p 887

    Google Scholar 

  • Underwood AJ (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge, p 504

    Google Scholar 

  • Van De Pol M, Bakker T, Saaltink D-J, Verhulst S (2006) Rearing conditions determine offspring survival independent of egg quality: a cross-foster experiment with Oystercatchers Haematopus ostralegus. Ibis 148:203–210

    Google Scholar 

  • Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations. ORNL/CDIAC-105. Carbon dioxide information analysis center, Oak Ridge national laboratory, U. S. Department of Energy, Oak Ridge, Tennessee

  • Wilbur KM, Anderson NG (1950) Carbonic anhydrase and growth in the oyster and busycon. Biol Bull 98:19–24

    CAS  Article  Google Scholar 

  • Wilson SP, Hyne RV (1997) Toxicity of acid-sulfate soil leachate and aluminium to embryos of the Sydney rock oyster. Ecotox Environ Safe 37:30–36

    CAS  Article  Google Scholar 

  • Zeebe RE, Wolf-Gladrow D (2001) CO2 in seawater. Equilibrium, kinetics, isotopes. Elsevier Oceanography Series 65:655, Amsterdam

Download references

Acknowledgments

We wish to acknowledge the support of the New South Wales Industry and Investment NSW and staff and students in the College of Health and Science, School of Natural Sciences at the University of Western Sydney. This study is part of the senior author’s PhD, and she acknowledges the support of Matthew Smiles, Julie and Steven Parker.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauline M. Ross.

Additional information

Communicated by H. O. Pörtner.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Parker, L.M., Ross, P.M. & O’Connor, W.A. Populations of the Sydney rock oyster, Saccostrea glomerata, vary in response to ocean acidification. Mar Biol 158, 689–697 (2011). https://doi.org/10.1007/s00227-010-1592-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-010-1592-4

Keywords

  • Ocean Acidification
  • Shell Growth
  • Carbonic Anhydrase Activity
  • Elevated pCO2
  • pCO2 Level