Skip to main content

Advertisement

Log in

Predicting structural complexity of reefs and fish abundance using acoustic remote sensing (RoxAnn)

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

This study determined whether the acoustic roughness of Caribbean reef habitats is an accurate proxy for their topographic complexity and a significant predictor of their fish abundance. Fish abundance was measured in 25 sites along the forereef of Glovers Atoll (Belize). At each site, in situ rugosity (ISR) was estimated using the “chain and tape” method, and acoustic roughness (E1) was acquired using RoxAnn. The relationships between E1 and ISR, and between both E1 and ISR and the abundance of 17 common species and the presence of 10 uncommon species were tested. E1 was a significant predictor of the topographic complexity (r 2 = 0.66), the abundance of 10 common species of surgeonfishes, pomacentrids, scarids, grunts and serranids and the presence of 4 uncommon species of pomacentrids and snappers. Small differences in E1 (i.e. ∆0.05–0.07) reflected in subtle but significant differences in fish abundance (~1 individual 200 m−2 and 116 g 200 m−2) among sites. Although we required the use of IKONOS data to obtain a large number of echoes per site, future studies will be able to utilise RoxAnn data alone to detect spatial patterns in substrate complexity and fish abundance, provided that a minimum of 50 RoxAnn echoes are collected per site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andréfouët S, Kramer P, Torres-Pulliza D, Joyce KE, Hochberg EJ, Garza-Perez R, Mumby PJ, Riegl B, Yamano H, White WH, Zubia M, Brock JC, Phinn SR, Naseer A, Hatcher BG, Muller-Karger FE (2003) Multi-site evaluation of IKONOS data for classification of tropical coral reef environments. Remote Sens Environ 88:128–143. doi:110.1016/j.rse.2003.1004.1005

    Article  Google Scholar 

  • Andrew NL, Mapstone BD (1987) Sampling and the description of spatial pattern in marine ecology. Oceanogr Mar Biol Annu Rev 25:39–90

    Google Scholar 

  • Bell JD, Galzin R (1984) Influence of live coral cover on coral-reef fish communities. Mar Ecol Prog Ser 15:265–274. doi:210.3354/meps015265

    Article  Google Scholar 

  • Birrell CL, McCook LJ, Willis BL (2005) Effects of algal turfs and sediment on coral settlement. Mar Poll Bull 51:408–414. doi:410.1016/j.marpolbul.2004.1010.1022

    Article  CAS  Google Scholar 

  • Bohnsack JA, Harper DE (1998) Length-weight relationships of selected marine reef fishes from the southeastern United States and the Caribbean. Technical Memorandum NMFS-SEFC-215 (National Oceanic and Atmospheric Administration, Miami, Florida, 1988)

  • Bonaldo RM, Krajewski JP, Sazima I (2005) Meals for two: foraging activity of the Butterflyfish Chaetodon striatus (Perciformes) in Southeast Brazil. Braz J Biol 65:211–215

    Article  CAS  Google Scholar 

  • Brock VE (1954) A preliminary report on a method of estimating reef fish populations. J Wildl Manag 18:297–308. doi:210.2307/3797016

    Article  Google Scholar 

  • Bruggemann JH, Kuyper MWM, Breeman AM (1994) Comparative analysis of foraging and habitat use by the sympatric Caribbean parrotfish Scarus vetula and Sparisoma viride (Scaridae). Mar Ecol Prog Ser 112:51–66. doi:10.3354/meps112051

    Article  Google Scholar 

  • Burke NC (1995) Nocturnal foraging habitats of French and bluestriped grunts, Haemulon flavolineatum and H. sciurus, at Tobacco Caye, Belize. Environ Biol Fish 42:365–374. doi:310.1007/BF00001467

    Article  Google Scholar 

  • Caley MJ, St John J (1996) Refuge availability structures assemblages of tropical reef fishes. J Anim Ecol 65:414–428. doi:410.2307/5777

    Article  Google Scholar 

  • Carpenter KE, Miclat RI, Albaladejo VD, Corpuz VT (1981) The influence of substrate structure on the local abundance and diversity of Philippine reef fishes. In: Proceedings of 4th international coral reef symposium, Manila, pp 497–502

  • Chabanet P, Ralambondrainy H, Amanieu M, Faure G, Galzin R (1997) Relationships between coral reef substrata and fish. Coral Reefs 16:93–102. doi:110.1007/s003380050063

    Article  Google Scholar 

  • Chapman MR, Kramer DL (2000) Movements of fishes within and among fringing coral reefs in Barbados. Environ Biol Fish 57:11–24. doi:10.1023/A:1004545724503

    Article  Google Scholar 

  • Choat JH, Bellwood DR (1991) Reef fishes: their history and evolution. In: Sale PF (ed) The ecology of fishes on coral reefs. Academic Press, Inc., London, pp 39–66

    Google Scholar 

  • Clarke RD (1977) Habitat distribution and species diversity of Chaetodontid and Pomacentrid fishes near Bimini, Bahamas. Mar Biol 40:277–289. doi:210.1007/BF00390882

    Article  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences. Erlbaum, Hillsdale

    Google Scholar 

  • Collins MB, Voulgaris G (1993) Empirical field and laboratory evaluation of a real-time acoustic sea-bed surveying system. In: Proceedings of Institutional Acoustics, 15, Part 2, pp 343–351

  • Costa BM, Battista TA, Pittman SJ (2009) Comparative evaluation of airborne LiDAR and ship-based multibeam SoNAR bathymetry and intensity for mapping coral reef ecosystems. Remote Sens Environ 113:1082–1100. doi:1010.1016/j.rse.2009.1001.1015

    Article  Google Scholar 

  • Crawley MJ (2002) Statistical computing, an introduction to data analysis using S-Plus. Wiley, West Sussex

    Google Scholar 

  • Ebersole JP (1985) Niche separation of two damselfish species by aggression and differential microhabitat utilization. Ecology 66:14–20. doi:10.2307/1941302

    Article  Google Scholar 

  • Ehrlich PR (1975) The population biology of coral reef fishes. Annu Rev Ecol Syst 6:211–247

    Article  Google Scholar 

  • Faraway JJ (2005) Linear models with R. Chapman & Hall, London

    Google Scholar 

  • Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191

    Article  Google Scholar 

  • Fletcher D, Faddy M (2007) Confidence intervals for expected abundance of rare species. J Agric Biol Environ Stat 12:315–324. doi:310.1198/108571107X108229322

    Article  Google Scholar 

  • Fletcher D, Mackenzie D, Villouta E (2005) Modelling skewed data with many zeros: a simple approach combining ordinary and logistic regression. Environ Ecol Stat 12:45–54. doi:10.1007/s10651-10005-16817-10651

    Article  Google Scholar 

  • Friedlander AM, Brown EK, Jokiel PL, Smith WR, Rodgers KS (2003) Effects of habitat, wave exposure, and marine protected area status on coral reef fish assemblages in the Hawaiian archipelago. Coral Reefs 22:291–305. doi:210.1007/s00338-00003-00317-00332

    Article  Google Scholar 

  • Garcia LV (2004) Escaping the Bonferroni iron claw in ecological studies. Oikos 105:657–663. doi:610.1111/j.0030-1299.2004.13046.x

    Article  Google Scholar 

  • Gore MA (1983) The effect of a flexible spacing system on the social organization of a coral reef fish, Chaetodon capistratus. Behaviour 85:118–145. doi:110.1163/156853983X156800066

    Article  Google Scholar 

  • Gratwicke B, Speight MR (2005a) Effects of habitat complexity on Caribbean marine fish assemblages. Mar Ecol Prog Ser 292:301–310. doi:310.3354/meps292301

    Article  Google Scholar 

  • Gratwicke B, Speight MR (2005b) The relationship between fish species richness, abundance and habitat complexity in a range of shallow tropical marine habitats. J Fish Biol 66:650–667. doi:610.1111/j.0022-1112.2005.00629.x

    Article  Google Scholar 

  • Greenstreet SPR, Tuck ID, Grewar GN, Armstrong E, Reid DG, Wright PJ (1997) An assessment of the acoustic survey technique, RoxAnn, as a means of mapping seabed habitat. ICES. J Mar Sci 54:939–959. doi:910.1006/jmsc.1997.0220

    Google Scholar 

  • Hamilton LJ (2001) Acoustic seabed classification systems. DSTO Aeronautical and Maritime Research Laboratory, Australia

    Google Scholar 

  • Hamilton LJ, Mulhearn PJ, Poeckert R (1999) Comparison of RoxAnn and QTC-view acoustic bottom classification system performance for the Cairns area, Great Barrier Reef, Australia. Cont Shelf Res 19:1577–1597. doi:1510.1016/S0278-4343(1599)00020-00025

    Article  Google Scholar 

  • Hixon MA (1996) Effects of reef fishes on corals and algae. In: Birkeland C (ed) Life and death of the coral reefs. Chapman and Hall, New York, pp 230–248

    Google Scholar 

  • Hixon MA, Beets JP (1993) Predation, prey refuges and the structure of coral-reef fish assemblages. Ecol Monogr 63:77–101. doi:110.2307/2937124

    Article  Google Scholar 

  • Hughes TP, Rodrigues MJ, Bellwood DR, Ceccarelli D, Hoegh-Guldberg O, McCook L, Moltschaniwskyj N, Pratchett MS, Steneck RS, Willis B (2007) Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr Biol 17:360–365. doi:310.1016/j.cub.2006.1012.1049

    Article  CAS  Google Scholar 

  • Humann P, Deloach N (2000) Reef fish identification: Florida Caribbean Bahamas. New World Publications, Inc., Jacksonville

    Google Scholar 

  • Hutin E, Simard Y, Archambault P (2005) Acoustic detection of a scallop bed from a single-beam echosounder in the St. Lawrence. ICES. J Mar Sci 62:966–983. doi:910.1016/j.icesjms.2005.1003.1007

    Google Scholar 

  • Jennings S, Boulle DP, Polunin NVC (1996) Habitat correlates of the distribution and biomass of Seychelles’ reef fishes. Environ Biol Fish 46:15–25. doi:10.1007/BF00001693

    Article  Google Scholar 

  • Johansen JL, Bellwood DR, Fulton CJ (2008) Coral reef fishes exploit flow refuges in high-flow habitats. Mar Ecol Prog Ser 360:219–226. doi:210.3354/meps07482

    Article  Google Scholar 

  • Joyce KE, Belliss SE, Samsonov SV, McNeill SJ, Glassey PJ (2009) A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters. Prog Phys Geogr 33:183–207. doi:110.1177/0309133309339563

    Article  Google Scholar 

  • Knudby A, LeDrew E, Brenning A (2010) Predictive mapping of reef fish species richness, diversity and biomass in Zanzibar using IKONOS imagery and machine-learning techniques. Remote Sens Environ 114:1230–1241. doi:1210.1016/j.rse.2010.1201.1007

    Article  Google Scholar 

  • Kuffner IB, Brock JC, Grober-Dunsmore R, Bonito VE, Hickey TD, Wright CW (2007) Relationships between reef fish communities and remotely sensed rugosity measurements in Biscayne National Park, Florida, USA. Environ Biol Fish 78:71–82. doi:10.1007/s10641-10006-19078-10644

    Article  Google Scholar 

  • Longley WH, Hildebrand SF (1941) Systematic catalogue of the fishes of Tortugas, Florida with observations on color, habits, and local distribution. Pap Tortugas Lab 34 (Canergie Inst. Wash. Pub. 535): xiii + 331, 334 pls

  • Luckhurst BE, Luckhurst K (1978a) Analysis of influence of substrate variables on coral-reef fish communities. Mar Biol 49:317–323. doi:310.1007/BF00455026

    Article  Google Scholar 

  • Luckhurst BE, Luckhurst K (1978b) Diurnal space utilization in coral-reef fish communities. Mar Biol 49:325–332. doi:310.1007/BF00455027

    Article  Google Scholar 

  • Lundblad ER, Wright DJ, Miller J, Larkin EM, Rinehart R, Naar DF, Donahue BT, Anderson SM, Battista T (2006) A benthic terrain classification scheme for American Samoa. Mar Geod 29:89–111. doi:110.1080/01490410600738021

    Article  Google Scholar 

  • Martin TG, Wintle BA, Rhodes JR, Kuhnert PM, Field SA, Low-Choy SJ, Tyre AJ, Possingham HP (2005) Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. Ecol Lett 8:1235–1246. doi:1210.1111/j.1461-0248.2005.00826.x

    Article  Google Scholar 

  • Mason G (1987) Coping with collinearity. Can J Program Eval 2:87–95

    Google Scholar 

  • McCormick MI (1994) Comparison of field methods for measuring surface topography and their associations with a tropical reef fish assemblage. Mar Ecol Prog Ser 112:87–96. doi:10.3354/meps112087

    Article  Google Scholar 

  • Mellin C, Andréfouët S, Kulbicki M, Dalleau M, Vigliola L (2009) Remote sensing and fish-habitat relationships in coral reef ecosystems: review and pathways for systematic multi-scale hierarchical research. Mar Poll Bull 58:11–19. doi:10.1016/j.marpolbul.2008.1010.1010

    Article  CAS  Google Scholar 

  • Ménard A, Turgeon K, Kramer DL (2008) Selection of diurnal refuges by the nocturnal squirrelfish, Holocentrus rufus. Environ Biol Fish 82:59–70. doi:10.1007/s10641-10007-19253-10642

    Article  Google Scholar 

  • Mumby PJ, Edwards AJ (2002) Mapping marine environments with IKONOS imagery: enhanced spatial resolution can deliver greater thematic accuracy. Remote Sens Environ 82:248–257. doi:210.1016/S0034-4257(1002)00041-X

    Article  Google Scholar 

  • Mumby PJ, Wabnitz C (2002) Spatial patterns of aggression, territory size, and harem size in five sympatric Caribbean parrotfish species. Environ Biol Fish 63:265–279. doi:210.1023/A:1014359403167

    Article  Google Scholar 

  • Mumby PJ, Dahlgren CP, Harborne AR, Kappel CV, Micheli F, Brumbaugh DR, Holmes KE, Mendes JM, Broad K, Sanchirico JN, Buch K, Box S, Stoffle RW, Gill AB (2006) Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311:98–101. doi:110.1126/science.1121129

    Article  CAS  Google Scholar 

  • Mumby PJ, Harborne AR, Williams J, Kappel CV, Brumbaugh DR, Micheli F, Holmes KE, Dahlgren CP, Paris CB, Blackwell PG (2007a) Trophic cascade facilitates coral recruitment in a marine reserve. Proc Natl Acad Sci USA 104:8362–8367. doi:8310.1073/pnas.0702602104

    Article  CAS  Google Scholar 

  • Mumby PJ, Hastings A, Edwards HJ (2007b) Thresholds and the resilience of Caribbean coral reefs. Nature 450:98–101. doi:110.1038/nature06252

    Article  CAS  Google Scholar 

  • Muñoz RC, Motta PJ (2000) Interspecific aggression between two parrotfishes (Sparisoma, Scaridae) in the Florida Keys. Copeia 3:674–683

    Article  Google Scholar 

  • Nanami A, Nishihira M (2002) The structures and dynamics of fish communities in an Okinawan coral reef: effects of coral-based habitat structures at sites with rocky and sandy sea bottoms. Environ Biol Fish 63:353–372. doi:310.1023/A:1014952932694

    Article  Google Scholar 

  • NOAA (1996) Manguso-Stevens fishery conservation and management act, as ammended through October 11, 1996. NOAA Tech. Memo. NMFS-F/SPO-23, pp 121

  • O’Brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41:673–690. doi:610.1007/s11135-11006-19018-11136

    Article  Google Scholar 

  • Perneger TV (1998) What’s wrong with the Bonferroni adjustments. Brit Med J 316:1236–1238

    CAS  Google Scholar 

  • Pittman SJ, Christensen JD, Caldow C, Menza C, Monaco ME (2007) Predictive mapping of fish species richness across shallow-water seascapes in the Caribbean. Ecol Model 204:9–21. doi:10.1016/j.ecolmodel.2006.1012.1017

    Article  Google Scholar 

  • Pittman SJ, Costa BM, Battista TA (2009) Using lidar bathymetry and boosted regression trees to predict the diversity and abundance of fish and corals. J Coast Res 53:27–38. doi:10.2112/SI2153-2004.2111

    Article  Google Scholar 

  • Popple ID, Hunte W (2005) Movement patterns of Cephalopholis cruentata in a marine reserve in St Lucia, WI, obtained from ultrasonic telemetry. J Fish Biol 67:981–992. doi:910.1111/j.0022-1112.2005.00797.x

    Article  Google Scholar 

  • Purkis SJ, Graham NAJ, Riegl BM (2008) Predictability of reef fish diversity and abundance using remote sensing data in Diego Garcia (Chagos Archipelago). Coral Reefs 27:167–178. doi:110.1007/s00338-00007-00306-y

    Article  Google Scholar 

  • Randall JE (1967) Food habits of reef fishes of the West Indies. Stud Trop Oceanogr Miami 5:665–847

    Google Scholar 

  • Risk MJ (1972) Fish diversity on a coral reef in the Virgin Islands. Atoll Res Bull 153:1–6

    Google Scholar 

  • Roberts CM, Ormond RFG (1987) Habitat complexity and coral reef fish diversity and abundance on Red Sea fringing reefs. Mar Ecol Prog Ser 41:1–8. doi:10.3354/meps041001

    Article  CAS  Google Scholar 

  • Robertson DR, Sheldon JM (1979) Competitive interactions and the availability of sleeping sites for a diurnal coral reef fish. J Exp Mar Biol Ecol 40:285–298. doi:210.1016/0022-0981(1079)90057-90051

    Article  Google Scholar 

  • Robertson DR, Sweatman HPA, Fletcher EA, Cleland MG (1976) Schooling as a mechanism for circumventing the territoriality of competitors. Ecology 57:1208–1220. doi:1210.2307/1935045

    Article  Google Scholar 

  • Rothman KJ (1990) No adjustments are needed for multiple comparisons. Epidemiology 1:43–46. doi:10.1097/00001648-199001000-199000010

    Article  CAS  Google Scholar 

  • Sale PF (1991) The ecology of fishes on coral reefs. Academic Press, Inc, UK

    Google Scholar 

  • Sale PF, Douglas WA (1984) Temporal variability in the community structure of fish on coral patch reefs and the relation of community structure to reef structure. Ecology 65:409–422. doi:410.2307/1941404

    Article  Google Scholar 

  • Schlagintweit GEO (1993) Real-time acoustic bottom classification for hydrography: a field evaluation of RoxAnn Oceans 93. In: Proceedings, pp C214–C219

  • Shacham M, Brauner N (1997) Minimizing the effects of collinearity in polynomial regression. Ind Eng Chem Res 36:4405–4412. doi:4410.1021/ie970236k

    Article  CAS  Google Scholar 

  • Shpigel M, Fishelson L (1991) Territoriality and associated behaviour in three species of the genus Cephalopholis (Pisces: Serranidae) in the Gulf of Aqaba, Red Sea. J Fish Biol 38:887–897. doi:810.1111/j.1095-8649.1991.tb03628.x

    Article  Google Scholar 

  • Šidák Z (1968) On multivariate normal probabilities of rectangles: their dependence on correlations. Ann Math Stat 39:1425–1434

    Google Scholar 

  • Simes RJ (1986) An improved Bonferroni procedure for multiple tests of significance. Biometrika 73:751–754. doi:710.2307/2336545

    Article  Google Scholar 

  • Su H, Liu H, Heyman WD (2008) Automated derivation of bathymetric information from multi-spectral satellite imagery using a non-linear inversion model. Mar Geod 31:281–298. doi:210.1080/01490410802466652

    Article  Google Scholar 

  • Thresher RE (1976) Field analysis of the territoriality of the Threespot Damselfish, Pomacentrus planifrons (Pomacentridae). Copeia 1976:266–276. doi:210.2307/1443946

    Article  Google Scholar 

  • von Szalay PG, McConnaughey RA (2002) The effect of slope and vessel speed on the performace of a single beam acoustic seabed classification system. Fish Res 99–112. doi:110.1016/S0165-7836(1002)00020-00026

  • Walker BK, Jordan LKB, Spieler RE (2009) Relationship of reef fish assemblages and topographic complexity on southeastern Florida coral reef habitats. J Coast Res 25:39–48. doi:10.2112/SI2153-2005.2111

    Article  Google Scholar 

  • Wedding LM, Friedlander AM, McGranaghan M, Yost RS, Monaco ME (2008) Using bathymetric lidar to define nearshore benthic habitat complexity: Implications for management of reef fish assemblages in Hawaii. Remote Sens Environ 112:4159–4165. doi:4110.1016/j.rse.2008.4101.4025

    Article  Google Scholar 

  • White WH, Harborne AR, Sotheran IS, Walton R, Foster-Smith RL (2003) Using an acoustic ground discrimination system to map coral reef benthic classes. Int J Remote Sens 24:2641–2660. doi:2610.1080/0143116031000066981

    Article  Google Scholar 

  • Wolf NG (1987) Schooling tendency and foraging benefit in the Ocean Surgeonfish. Behav Ecol Sociobiol 21:59–63. doi:10.1007/BF00324436

    Article  Google Scholar 

  • Zuur AF, Leno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York. doi:10.1007/978-0-387-87458-6

Download references

Acknowledgments

This study was funded by the World Bank/Global Environmental Facility Coral Reef Targeted Research Project (CRTR). We thank Victor Ticzon, Dr. Colette Wabnitz, Carlos Zapata and Gilberto Acosta for assistance in the field and 3 anonymous reviewers for comments that improved this manuscript considerably.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Bejarano.

Additional information

Communicated by D. Goulet.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bejarano, S., Mumby, P.J. & Sotheran, I. Predicting structural complexity of reefs and fish abundance using acoustic remote sensing (RoxAnn). Mar Biol 158, 489–504 (2011). https://doi.org/10.1007/s00227-010-1575-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-010-1575-5

Keywords

Navigation