Advertisement

Marine Biology

, Volume 157, Issue 11, pp 2545–2565 | Cite as

Heterogeneous energetic pathways and carbon sources on deep eastern Mediterranean cold seep communities

  • Antoine CarlierEmail author
  • Bénédicte Ritt
  • Clara F. Rodrigues
  • Jozée Sarrazin
  • Karine Olu
  • Jacques Grall
  • Jacques Clavier
Original Paper

Abstract

Cold seep communities in the Mediterranean Sea have only been discovered two decades ago, and their trophic ecology has been the subject of very few studies. We investigated the benthic food web of two deep chemosynthesis-based ecosystems on the Napoli and Amsterdam mud volcanoes (MVs) in the eastern Mediterranean Sea (~2,000 m depth). Seeping methane has been detected at the surface of both MVs during pioneering cruises and has been hypothesised to be assimilated by benthic fauna as observed in other oceans’ margins. Given the extreme oligotrophic character of the eastern Mediterranean Sea, we a priori expected that chemosynthetic food sources, especially methane-derived carbon (MDC), played a major trophic role in these deep seep communities relative to what has been observed in other seep systems worldwide. We aimed at unravelling the trophic relationships on Napoli and Amsterdam MVs through the analysis of carbon, nitrogen and sulphur isotopes both in the dominant benthic invertebrates including the small endofauna (300 μm < size < 1 cm) and in the sedimented organic matter. In particular, we assessed the fraction of MDC in the tissue of several heterotrophic and symbiotic species. Low mean δ34S and δ13C values (0.4 ± 4.8‰ and −31.6 ± 5.7‰, respectively) obtained for mega- and macrofauna suggested that the investigated benthic food webs are virtually exclusively fuelled by carbon of chemosynthetic origin. A few grazer invertebrates (δ34S up to 11‰) depart from this trend and could complement their diet with sedimented and decayed phytoplanktonic organic matter. Faunal δ13C values indicated that the oxidation of sulphur is likely the predominant energetic pathway for biosynthesis on both MVs. Nevertheless, mytilid bivalves and small capitellid, ampharetid and spionid polychaetes were 13C-depleted (δ13C < −37‰) in a way indicating they assimilated a significant portion of MDC. For these later heterotrophic species, MDC ranged between 21 and 31% (lower estimates) and 97 and 100% (upper estimates). However, our results highlighted that the origin of assimilated carbon may be complex for some symbiotic species. The vestimentiferan tubeworm Lamellibrachia sp., which exclusively depends on its sulphur-oxidising endosymbionts, showed a ~20‰ inter-individual δ13C variability on a very small spatial scale (<1 m) at the summit of Napoli MV. This mostly reflects the variable isotopic composition of pore-water-dissolved inorganic carbon (DIC) and evidenced that tubeworms (and subsequently their endosymbionts) uptake DIC derived from multiple methane oxidation processes in varying proportions. The lower and upper MDC estimates for the vestimentum of Napoli’s individuals were 11–38 and 21–73%, respectively. Finally, data on trophic ecology of Napoli and Amsterdam MVs clearly corroborate previous geophysical results evidencing the spatial heterogeneity of Mediterranean MV environmental conditions.

Keywords

Bivalve Dissolve Inorganic Carbon Sedimented Organic Matter Remotely Operate Vehicle Cold Seep 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank the captain and the crew of the RV ‘Pourquoi pas?’ as well as the team of the ROV ‘Victor 6000’. The MEDECO cruise (2007) (chief scientist: J. Sarrazin) was funded by Ifremer and the HERMES European program (contract #511234). Thanks are also due to M. Le Duff for the help in the identification of fauna and O. Gauthier for kindly editing this manuscript. We acknowledge two anonymous referees for their relevant suggestions. Stable isotope analyses were performed at Iso-Analytical Laboratory (United Kingdom). A.C. was funded by a postdoctoral fellowship from HERMES and the ANR DeepOases (ANR06BDV005).

References

  1. Aloisi G, Pierre C, Rouchy J-M, Foucher J-P, Woodside J (2000) Methane-related authigenic carbonates of eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilisation. Earth Planet Sci Lett 184:321–338CrossRefGoogle Scholar
  2. Alperin MJ, Reeburgh WS, Whiticar MJ (1988) Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation. Global Biogeochem Cycles 2:279–288CrossRefGoogle Scholar
  3. Becker EL, Cordes EE, Macko SA, Fisher CR (2009) Importance of seep primary production to Lophelia pertusa and associated fauna in the Gulf of Mexico. Deep Sea Res Part I Oceanogr Res Pap 56:786–800CrossRefGoogle Scholar
  4. Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jorgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626CrossRefPubMedGoogle Scholar
  5. Brooks JM, Kennicutt MC II, Fay RR, McDonald TJ, Sassen R (1984) Thermogenic gas hydrates in the Gulf of Mexico. Science 225:409–411CrossRefPubMedGoogle Scholar
  6. Brooks JM, Kennicutt MC II, Fisher CR, Macko SA, Cole K, Childress JJ, Bidigare RR, Vetter RD (1987) Deep-sea hydrocarbon seep communities: evidence for energy and nutritional carbon sources. Science 238:1138–1142CrossRefPubMedGoogle Scholar
  7. Campbell BJ, Cary SC (2004) Abundance of reverse tricarboxylic acid cycle genes in free-living microorganisms at deep-sea hydrothermal vents. Appl Environ Microbiol 70:6282–6289CrossRefPubMedGoogle Scholar
  8. Carlier A, Le Guilloux E, Olu K, Sarrazin J, Mastrototaro F, Taviani M, Clavier J (2009) Trophic relationships in a deep Mediterranean cold-water coral bank (Santa Maria di Leuca, Ionian Sea). Mar Ecol Prog Ser 397:125–137CrossRefGoogle Scholar
  9. Cary C, Fry B, Felbeck H, Vetter RD (1989) Multiple trophic resources for a chemoautotrophic community at a cold water brine seep at the base of the Florida Escarpment. Mar Biol 100:411–418CrossRefGoogle Scholar
  10. Charlou JL, Donval JP, Zitter T, Roy N, Jean-Baptiste P, Foucher JP, Woodside J (2003) Evidence of methane venting and geochemistry of brines on mud volcanoes of the eastern Mediterranean Sea. Deep Sea Res Part I Oceanogr Res Pap 50:941–958CrossRefGoogle Scholar
  11. Childress JJ, Fisher CR, Brooks JM, Kennicutt MC II, Bidigare R, Anderson AE (1986) A methanotrophic marine molluscan (Bivalvia, Mytilidae) symbiosis: mussels fueled by gas. Science 233:1306–1308CrossRefPubMedGoogle Scholar
  12. CIESM (2006) Fluid seepages/mud volcanism in the Mediterranean and adjacent domains CIESM workshop monographs, MonacoGoogle Scholar
  13. Claypool GE, Kaplan IR (1974) The origin and distribution of methane in marine sediments. In: Kaplan IR (ed) Natural gases in marine sediments. Plenum, pp 99–139Google Scholar
  14. Conway NM, Kennicutt MC II, Van Dover CL (1994) Stable isotopes in the study of marine chemosynthetic-based ecosystems. In: Lajtha K, Michener RH (eds) Stable isotopes in ecology and environmental science. Blackwell Scientific Publications, Oxford, pp 158–186Google Scholar
  15. Cordes EE, Bergquist DC, Fisher CR (2009a) Macro-ecology of Gulf of Mexico cold seeps. Annu Rev Mar Sci 1:143–168CrossRefGoogle Scholar
  16. Cordes EE, Cunha MR, Galéron J, Mora C, Olu-Le Roy K, Sibuet M, Van Gaever S, Vanreusel A, Levin LA (2009b) The influence of geological, geochemical, and biogenic habitat heterogeneity on seep biodiversity. Mar Ecol 31:51–65CrossRefGoogle Scholar
  17. Corselli C, Basso D (1996) First evidence of benthic communities based on chemosynthesis on the Napoli mud volcano (eastern Mediterranean). Mar Geol 132:227–239CrossRefGoogle Scholar
  18. Cronin BT, Ivanov MK, Limonov AF, Egorov A, Akhmanov GG, Akhmetjanov AM, Kozlova E, Shipboard scientific party TTR (1997) New discoveries of mud volcanoes on the eastern Mediterranean ridge. J Geol Soc 154:173–182CrossRefGoogle Scholar
  19. Dando PR, Austen MC, Burke RAJ, Kendall MA, Kennicutt MCI, Judd AG, Moore DC, O’Hara SCM, Schmaljohann R, Southward AJ (1991) Ecology of a North Sea pockmark with an active methane seep. Mar Ecol Prog Ser 70:49–63CrossRefGoogle Scholar
  20. Danovaro R, Della Croce N, Dell’Anno A, Mauro F, Marrale D, Martorano D (2000) Seasonal changes and biochemical composition of the labile organic matter flux in the Cretan Sea. Prog Oceanogr 46:259–278CrossRefGoogle Scholar
  21. Dattagupta S, Miles LL, Barnabei MS, Fisher CR (2006) The hydrocarbon seep tubeworm Lamellibrachia luymesi primarily eliminates sulfate and hydrogen ions across its roots to conserve energy and ensure sulfide supply. J Exp Biol 209:3795–3805CrossRefPubMedGoogle Scholar
  22. Desbruyères D, Gaill F, Laubier L, Prieur D, Rau GH (1983) Unusual nutrition of the “Pompeii worm” Alvinella pompejana (polychaetous annelid) from a hydrothermal vent environment: SEM, TEM, 13C and 15 N evidence. Mar Biol 75:201–205CrossRefGoogle Scholar
  23. Dubilier N, Bergin C, Lott C (2008) Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 6:725–740CrossRefPubMedGoogle Scholar
  24. Dufour SC, Felbeck H (2003) Sulphide mining by the superextensile foot of symbiotic thyasirid bivalves. Nature 426:65–67CrossRefPubMedGoogle Scholar
  25. Dugdale RC, Wilkerson FP (1988) Nutrient sources and primary production in the eastern Mediterranean. Oceanol Acta 9:178–184Google Scholar
  26. Duperron S, Fiala-Médioni A, Caprais J-C, Olu K, Sibuet M (2007) Evidence for chemoautotrophic symbiosis in a Mediterranean cold seep clam (Bivalvia: Lucinidae): comparative sequence analysis of bacterial 16S rRNA, APS reductase and RubisCO genes. FEMS Microbiol Ecol 59:64–70CrossRefPubMedGoogle Scholar
  27. Duperron S, Halary S, Lorion J, Sibuet M, Gaill F (2008) Unexpected co-occurrence of six bacterial symbionts in the gills of the cold seep mussel Idas sp. (Bivalvia: Mytilidae). Environ Microbiol 10:433–445CrossRefPubMedGoogle Scholar
  28. Duperron S, de Beer D, Zbinden M, Boetius A, Schipani V, Kahil N, Gaill F (2009) Molecular characterization of bacteria associated with the trophosome and the tube of Lamellibrachia sp., a siboglinid annelid from cold seeps in the eastern Mediterranean. FEMS Microbiol Ecol 69:395–409CrossRefPubMedGoogle Scholar
  29. Egorov AV, Ivanov MK (1998) Hydrocarbon gases in sediments and mud breccia from the central and eastern part of the Mediterranean ridge. Geo Mar Lett 18:127–138CrossRefGoogle Scholar
  30. Elvert M, Suess E, Greinert J, Whiticar MJ (2000) Archaea mediating anaerobic methane oxidation in deep-sea sediments at cold seeps of the eastern Aleutian subduction zone. Org Geochem 31:1175–1187CrossRefGoogle Scholar
  31. Fauchald K, Jumars PA (1979) The diet of worms: a study of polychaete feeding guilds. Oceanogr Mar Biol Annu Rev 17:193–284Google Scholar
  32. Felbeck H (1981) Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila Jones (Vestimentifera). Science 213:336–338CrossRefPubMedGoogle Scholar
  33. Fisher CR (1990) Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Rev Aquat Sci 2:399–436Google Scholar
  34. Fisher CR, Kennicutt MC II, Brooks JM (1990) Stable carbon isotopic evidence for carbon limitation in hydrothermal vent vestimentiferans. Science 247:1094–1096CrossRefPubMedGoogle Scholar
  35. Freytag JK, Girguis PR, Bergquist DC, Andras JP, Childress JJ, Fisher CR (2001) A paradox resolved: sulfide acquisition by roots of seep tubeworms sustains net chemoautotrophy. Proc Natl Acad Sci USA 98:13408–13413CrossRefPubMedGoogle Scholar
  36. Fry B (1988) Food web structure on Georges Bank from stable C, N, and S isotopic compositions. Limnol Oceanogr 33:1182–1190CrossRefGoogle Scholar
  37. Fry B, Gest H, Hayes JM (1983) Sulphur isotopic compositions of deep-sea hydrothermal vent animals. Nature 306:51–52CrossRefGoogle Scholar
  38. Gebruk A, Krylova E, Lein A, Vinogradov G, Anderson E, Pimenov N, Cherkashev G, Crane K (2003) Methane seep community of the Hakon Mosby mud volcano the Norwegian Sea: composition and trophic aspects. Sarsia North Atl Mar Sci 88:394–403CrossRefGoogle Scholar
  39. Gontharet S, Pierre C, Blanc-Valleron MM, Rouchy JM, Fouquet Y, Bayon G, Foucher JP, Woodside J, Mascle J (2007) Nature and origin of diagenetic carbonate crusts and concretions from mud volcanoes and pockmarks of the Nile deep-sea fan (eastern Mediterranean Sea). Deep Sea Res Part II Top Stud Oceanogr 54:1292–1311CrossRefGoogle Scholar
  40. Haese RR, Meile C, Van Cappellen P, De Lange GJ (2003) Carbon geochemistry of cold seeps: methane fluxes and transformation in sediments from Kazan mud volcano, eastern Mediterranean Sea. Earth Planet Sci Lett 212:361–375CrossRefGoogle Scholar
  41. Huguen C, Mascle J, Woodside J, Zitter T, Foucher JP (2005) Mud volcanoes and mud domes of the central Mediterranean ridge: near-bottom and in situ observations. Deep Sea Res Part I Oceanogr Res Pap 52:1911–1931CrossRefGoogle Scholar
  42. Iken K, Brey T, Wand U, Voigt J, Junghans P (2001) Food web structure of the benthic community at the Porcupine Abyssal Plain (NE Atlantic): a stable isotope analysis. Prog Oceanogr 50:383–405CrossRefGoogle Scholar
  43. Jarnegren J, Tobias CR, Macko SA, Young CM (2005) Egg predation fuels unique species association at deep-sea hydrocarbon seeps. Biol Bull 209:87–93CrossRefPubMedGoogle Scholar
  44. Kennicutt MC II, Burke RA, MacDonald IR, Brooks JM, Denoux GJ, Macko SA (1992) Stable isotope partitioning in seep and vent organisms: chemical and ecological significance. Chem Geol 101:293–310Google Scholar
  45. Kimura H, Higashide Y, Naganuma T (2003) Endosymbiotic microflora of the vestimentiferan tubeworm (Lamellibrachia sp.) from a bathyal cold seep. Mar Biotechnol 5:593–603CrossRefPubMedGoogle Scholar
  46. Kröncke I, Türkay M, Fiege D (2003) Macrofauna communities in the eastern Mediterranean deep sea. Mar Ecol 24:193–216CrossRefGoogle Scholar
  47. Levin LA (2005) Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes. Oceanogr Mar Biol Annv Rev 43:1–46Google Scholar
  48. Levin LA, Mendoza GF (2007) Community structure and nutrition of deep methane-seep macrobenthos from the North Pacific (Aleutian) margin and the Gulf of Mexico (Florida Escarpment). Mar Ecol 28:131–151CrossRefGoogle Scholar
  49. Levin LA, Michener RH (2002) Isotopic evidence for chemosynthesis-based nutrition of macrobenthos: the lightness of being at Pacific methane seeps. Limnol Oceanogr 47:1336–1345CrossRefGoogle Scholar
  50. Levin LA, James DW, Martin CM, Rathburn AE, Harris LH, Michener RH (2000) Do methane seeps support distinct macrofaunal assemblages? Observations on community structure and nutrition from the northern California slope and shelf. Mar Ecol Prog Ser 208:21–39CrossRefGoogle Scholar
  51. Lösekann T, Robador A, Niemann H, Knittel K, Boetius A, Dubilier N (2008) Endosymbioses between bacteria and deep-sea siboglinid tubeworms from an Arctic cold seep (Haakon Mosby Mud Volcano, Barents Sea). Environ Microbiol 10:3237–3254CrossRefPubMedGoogle Scholar
  52. MacAvoy SE, Carney RS, Fisher CR, Macko SA (2002a) Use of chemosynthetic biomass by large, mobile, benthic predators in the Gulf of Mexico. Mar Ecol Prog Ser 225:65–78CrossRefGoogle Scholar
  53. MacAvoy SE, Macko SA, Joye SB (2002b) Fatty acid carbon isotope signatures in chemosynthetic mussels and tube worms from Gulf of Mexico hydrocarbon seep communities. Chem Geol 185:1–8CrossRefGoogle Scholar
  54. MacAvoy SE, Fisher CR, Carney RS, Macko SA (2005) Nutritional associations among fauna at hydrocarbon seep communities in the Gulf of Mexico. Mar Ecol Prog Ser 292:51–60CrossRefGoogle Scholar
  55. MacAvoy SE, Carney RS, Morgan E, Macko SA (2008) Stable isotope variation among the mussel Bathymodiolus childressi and associated heterotrophic fauna at four cold-seep communities in the Gulf of Mexico. J Shellfish Res 27:147–151CrossRefGoogle Scholar
  56. McCutchan JH Jr, Lewis WM Jr, Kendall C, McGrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378–390CrossRefGoogle Scholar
  57. Milkov AV (2005) Molecular and stable isotope compositions of natural gas hydrates: a revised global dataset and basic interpretations in the context of geological settings. Org Geochem 36:681–702CrossRefGoogle Scholar
  58. Naganuma T, Elsaied H, Hoshii D, Kimura H (2005) Bacterial endosymbioses of gutless tube-dwelling worms in nonhydrothermal vent habitats. Mar Biotechnol 7:416–428CrossRefPubMedGoogle Scholar
  59. Olu K, Caprais JC, Galéron J, Causse R, von Cosel R, Budzinski H, Ménach KL, Roux CL, Levaché D, Khripounoff A, Sibuet M (2009) Influence of seep emission on the non-symbiont-bearing fauna and vagrant species at an active giant pockmark in the Gulf of Guinea (Congo-Angola margin). Deep Sea Res Part II Top Stud Oceanogr 56:2380–2393CrossRefGoogle Scholar
  60. Olu-Le Roy K, Sibuet M, Fiala-Medioni A, Gofas S, Salas C, Mariotti A, Foucher J-P, Woodside J (2004) Cold seep communities in the deep eastern Mediterranean Sea: composition, symbiosis and spatial distribution on mud volcanoes. Deep Sea Res Part I Oceanogr Res Pap 51:1915–1936CrossRefGoogle Scholar
  61. Omoregie EO, Niemann H, Mastalerz V, de Lange GJ, Stadnitskaia A, Mascle J, Foucher J-P, Boetius A (2009) Microbial methane oxidation and sulfate reduction at cold seeps of the deep eastern Mediterranean Sea. Mar Geol 261:114–127CrossRefGoogle Scholar
  62. Page HM, Fisher CR, Childress JJ (1990) Role of filter-feeding in the nutritional biology of a deep-sea mussel with methanotrophic symbionts. Mar Biol 104:251–257CrossRefGoogle Scholar
  63. Pancost RD, Sinninghe Damste JS, de Lint S, van der Maarel MJEC, Gottschal JC, The Medinaut Shipboard Scientific P (2000) Biomarker evidence for widespread anaerobic methane oxidation in mediterranean sediments by a consortium of methanogenic archaea and bacteria. Appl Environ Microbiol 66:1126–1132CrossRefPubMedGoogle Scholar
  64. Pape T, Kasten S, Zabel M, Bahr A, Abegg F, Hohnberg H-J, Bohrmann G (2010) Gas hydrates in shallow deposits of the Amsterdam mud volcano, Anaximander Mountains, Northeastern Mediterranean Sea. Geo Mar LettGoogle Scholar
  65. Paull CK, Hecker B, Commeau R, Freeman-Lynde RP, Neumann C, Corso WP, Golubic S, Hook JE, Sikes E, Curray J (1984) Biological communities at the Florida escarpment resemble hydrothermal vent taxa. Science 226:965–967CrossRefPubMedGoogle Scholar
  66. Paull CK, Jull AJT, Toolin LJ, Linick T (1985) Stable isotope evidence for chemosynthesis in an abyssal seep community. Nature 317:709–711CrossRefGoogle Scholar
  67. Paull CK, Martens CS, Chanton JP, Neumann AC, Coston J, Jull AJT, Toolin LJ (1989) Old carbon in living organisms and young CaCO3 cements from abyssal brine seeps. Nature 342:166–168CrossRefGoogle Scholar
  68. Paull CK, Chanton JP, Neumann AC, Coston JA, Martens CS, Showers W (1992) Indicators of methane-derived carbonates and chemosynthetic organic carbon deposits; examples from the Florida Escarpment. PALAIOS 7:361–375CrossRefGoogle Scholar
  69. Peckmann J, Thiel V (2004) Carbon cycling at ancient methane-seeps. Chem Geol 205:443–467CrossRefGoogle Scholar
  70. Peterson BJ (1999) Stable isotopes as tracers of organic matter input and transfer in benthic food webs: a review. Acta Oecol 20:479–487CrossRefGoogle Scholar
  71. Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320CrossRefGoogle Scholar
  72. Polunin NVC, Morales-Nin B, Pawsey WE, Cartes JE, Pinnegar JK, Moranta J (2001) Feeding relationships in Mediterranean bathyal assemblages elucidated by stable nitrogen and carbon isotope data. Mar Ecol Prog Ser 220:13–23CrossRefGoogle Scholar
  73. Rau GH (1981) Hydrothermal vent clam and tube worm 13C/12C: further evidence of nonphotosynthetic food sources. Science 213:338–340CrossRefPubMedGoogle Scholar
  74. Rau GH, Hedges JI (1979) Carbon-13 depletion in a hydrothermal vent mussel: suggestion of a chemosynthetic food source. Science 203:648–649CrossRefPubMedGoogle Scholar
  75. Riera P, Richard P, Grémare A, Blanchard G (1996) Food source of intertidal nematodes in the Bay of Marennes-Oléron (France), as determined by dual stable isotope analysis. Mar Ecol Prog Ser 142:303–309CrossRefGoogle Scholar
  76. Robinson JJ, Scott KM, Swanson ST, O’Leary MH, Horken K, Tabita FR, Cavanaugh CM (2003) Kinetic isotope effect and characterization of form II RubisCO from the chemoautotrophic endosymbionts of the hydrothermal vent tubeworm Riftia pachyptila. Limnol Oceanogr 48:48–54CrossRefGoogle Scholar
  77. Salas C, Woodside J (2002) Lucinoma kazani n. sp. (Mollusca: Bivalvia): evidence of a living benthic community associated with a cold seep in the eastern Mediterranean Sea. Deep Sea Res Part I Oceanogr Res Pap 49:991–1005CrossRefGoogle Scholar
  78. Schmaljohann R, Faber E, Whiticar MJ, Dando PR (1990) Co-existence of methane- and sulphur-based endosymbioses between bacteria and invertebrates at a site in the Skagerrak. Mar Ecol Prog Ser 61:119–124CrossRefGoogle Scholar
  79. Scott KM, Fisher CR (1995) Physiological ecology of sulfide metabolism in hydrothermal vent and cold seep vesicomyid clams and vestimentiferan tube worms. Am Zool 35:102–111Google Scholar
  80. Sellanes J, Quiroga E, Neira C (2008) Megafauna community structure and trophic relationships at the recently discovered Concepcion Methane Seep Area, Chile, 36{degrees}S. ICES J Mar Sci 65:1102–1111CrossRefGoogle Scholar
  81. Sibuet M, Olu K (1998) Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep Sea Res Part II Top Stud Oceanogr 45:517–567CrossRefGoogle Scholar
  82. Southward EC, Andersen AC, Hourdez S (submitted) Lamellibrachia anaximandri n.sp., a new vestimentiferan tubeworm from the Mediterranean (Annelida). ZoosystemaGoogle Scholar
  83. Spies RB, DesMarais DJ (1983) Natural isotope study of trophic enrichment of marine benthic communities by petroleum seepage. Mar Biol 73:67–71CrossRefGoogle Scholar
  84. Stavrakakis S, Chronis G, Tselepides A, Heussner S, Monaco A, Abassi A (2000) Downward fluxes of settling particles in the deep Cretan Sea (NE Mediterranean). Prog Oceanogr 46:217–240CrossRefGoogle Scholar
  85. Suess E, Whiticar MJ (1989) Methane-derived CO2 in pore fluids expelled from the Oregon subduction zone. Palaeogeogr Palaeoclimatol Palaeoecol 71:119–136CrossRefGoogle Scholar
  86. Thurber AR, Kröger K, Neira C, Wiklund H, Levin LA (2010) Stable isotope signatures and methane use by New Zealand cold seep benthos. Mar Geol 272:260–269Google Scholar
  87. Tselepides A, Papadopoulou K-N, Podaras D, Plaiti W, Koutsoubas D (2000) Macrobenthic community structure over the continental margin of Crete (South Aegean Sea, NE Mediterranean). Prog Oceanogr 46:401–428CrossRefGoogle Scholar
  88. Tsutsumi H, Wainright S, Montani S, Saga M, Ichihara S, Kogure K (2001) Exploitation of a chemosynthetic food resource by the polychaete Capitella sp. I. Mar Ecol Prog Ser 216:119–127CrossRefGoogle Scholar
  89. Tunnicliffe V, Juniper SK, Sibuet M (2003) Reducing environments of the deep-sea floor. In: Tyler PA (ed) Ecosystems of the deep oceans. Ecosystems of the World, pp 81–110Google Scholar
  90. Turley CM, Bianchi M, Christaki U, Conan P, Harris JRW, Psarra S, Ruddy G, Stutt ED, Tselepides A, Van Wambeke F (2000) Relationship between primary producers and bacteria in an oligotrophic sea—the Mediterranean and biogeochemical implications. Mar Ecol Prog Ser 193:11–18CrossRefGoogle Scholar
  91. Valentine D (2002) Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review. Antonie Van Leeuwenhoek 81:271–282CrossRefPubMedGoogle Scholar
  92. Van Dover CL, Fry B (1994) Microorganisms as food resources at deep-sea hydrothermal vents. Limnol Oceanogr 39:51–57CrossRefGoogle Scholar
  93. Van Gaever S, Moodley L, Pasotti F, Houtekamer M, Middelburg J, Danovaro R, Vanreusel A (2009) Trophic specialisation of metazoan meiofauna at the Håkon Mosby Mud Volcano: fatty acid biomarker isotope evidence. Mar Biol 156:1289–1296CrossRefGoogle Scholar
  94. Van Santvoort PJM, De Lange GJ, Thomson J, Colley S, Meysman FJR, Slomp CP (2002) Oxidation and origin of organic matter in surficial eastern Mediterranean hemipelagic sediments. Aquat Geochem 8:153–175CrossRefGoogle Scholar
  95. Vander Zanden MJ, Rasmussen JB (2001) Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnol Oceanogr 46:2061–2066CrossRefGoogle Scholar
  96. Vetter RD, Fry B (1998) Sulfur contents and sulfur-isotope compositions of thiotrophic symbioses in bivalve molluscs and vestimentiferan worms. Mar Biol 132:453–460CrossRefGoogle Scholar
  97. Werne JP, Baas M, Damste JSS (2002) Molecular isotopic tracing of carbon flow and trophic relationships in a methane-supported benthic microbial community. Limnol Oceanogr 47:1694–1701CrossRefGoogle Scholar
  98. Werne JP, Haese RR, Zitter T, Aloisi G, Bouloubassi I, Heijs S, Fiala-Médioni A, Pancost RD, Sinninghe Damsté JS, de Lange G, Forney LJ, Gottschal JC, Foucher J-P, Mascle J, Woodside J (2004) Life at cold seeps: a synthesis of biogeochemical and ecological data from Kazan mud volcano, eastern Mediterranean Sea. Chem Geol 205:367–390CrossRefGoogle Scholar
  99. Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314CrossRefGoogle Scholar
  100. Woodside JM, Ivanov MK, Limonov AF (1997) Neotectonics and fluid flow through the seafloor sediments in the eastern Mediterranean and Black Seas. Part I: eastern Mediterranean Sea. IOC Tech Ser 48:1–128Google Scholar
  101. Zitter TAC, Huguen C, Woodside JM (2005) Geology of mud volcanoes in the eastern Mediterranean from combined sidescan sonar and submersible surveys. Deep Sea Res Part I Oceanogr Res Pap 52:457–475CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Antoine Carlier
    • 1
    Email author
  • Bénédicte Ritt
    • 2
  • Clara F. Rodrigues
    • 3
  • Jozée Sarrazin
    • 2
  • Karine Olu
    • 2
  • Jacques Grall
    • 1
  • Jacques Clavier
    • 1
  1. 1.LEMAR-IUEMUMR 6539 (CNRS-Université de Bretagne Occidentale-IRD), Technopôle Brest IroisePlouzanéFrance
  2. 2.Laboratoire Environnement Profond, Département Etudes des Ecosystèmes ProfondsCentre Ifremer de Brest, BP 71PlouzanéFrance
  3. 3.CESAM & Biology DepartmentUniversity of AveiroAveiroPortugal

Personalised recommendations