Marine Biology

, Volume 157, Issue 11, pp 2511–2519 | Cite as

Seasonal contrasts in abundance and reproductive parameters of Penilia avirostris (Cladocera, Ctenopoda) in a coastal subtropical area

  • Leonardo K. Miyashita
  • Mayza Pompeu
  • Salvador A. Gaeta
  • Rubens M. Lopes
Original Paper

Abstract

We studied the population dynamics and the reproductive biology of Penilia avirostris during three consecutive years on the inner shelf off Ubatuba, Brazil. Penilia avirostris individuals and its eggs and embryos were counted, measured, and classified into stages. The species occurred throughout the studied period, in a wide temperature range (14.8–28.2°C). Cladoceran densities were usually higher (>2,000 ind m−3) in warm seasons, when the water column was stratified as a consequence of bottom intrusions of the cold- and nutrient-rich South Atlantic Central Water. Juveniles, non-reproducing females, and parthenogenic females were the dominant developmental stages. Males and gamogenic females were rare and only occurred when females reached peak abundances. This suggests that in tropical and subtropical coastal seas gamogenesis in P. avirostris is not as common as in temperate seas, but may play a significant role in the density-dependent control of the population preceding unfavourable periods.

References

  1. Aidar E, Gaeta SA, Gianesella-Galvão SMF, Kutner MBB, Teixeira C (1993) Ecossistema costeiro subtropical: nutrientes dissolvidos, fitoplâncton e clorofila-a e suas relações com as condições oceanográficas na região de Ubatuba, SP. Publção Esp Inst Oceanogr S Paulo 10:9–43Google Scholar
  2. Atienza D, Saiz E, Calbet A (2006a) Feeding ecology of the marine cladoceran Penilia avirostris: natural diet, prey selectivity and daily ration. Mar Ecol Prog Ser 315:211–220CrossRefGoogle Scholar
  3. Atienza D, Calbet A, Saiz E, Alcaraz M, Trepat I (2006b) Trophic impact, metabolism, and biogeochemical role of the marine cladoceran Penilia avirostris and the co-dominant copepod Oithona nana in NW Mediterranean coastal waters. Mar Biol 150:221–235CrossRefGoogle Scholar
  4. Atienza D, Calbet A, Saiz E, Lopes RM (2007) Ecological success of the cladoceran Penilia avirostris in the marine environment: feeding performance, gross growth efficiencies and life history. Mar Biol 151:1385–1396CrossRefGoogle Scholar
  5. Atienza D, Saiz E, Skovgaard A, Trepat I, Calbet A (2008) Life history and population dynamics of the marine cladoceran Penilia avirostris (Branchiopoda: Cladocera) in the Catalan Sea (NW Mediterranean). J Plankton Res 30:345–357CrossRefGoogle Scholar
  6. Della Croce N (1966) Observations on the marine cladoceran Penilia avirostris in northwestern Atlantic waters. US Bur Sport Fish Wildlife Tech Pap 3:1–13Google Scholar
  7. Della Croce N, Bettanin S (1965) Sviluppo embrionale della forma partenogenetica di Penilia avirostris Dana. Cah Biol Mar 6:269–275Google Scholar
  8. Della Croce N, Bettanin S (1969) Formazione delle uova durevoli in Penilia avirostris Dana. Cah Biol Mar 10:95–102Google Scholar
  9. Della Croce N, Venugopal P (1973) Penilia avirostris Dana in the Indian Ocean (Cladocera). Int Revue Ges Hydrobiol 58:713–721CrossRefGoogle Scholar
  10. Egloff DA, Fofonoff PW, Onbé T (1997) Reproductive biology of marine cladocerans. Adv Mar Biol 31:79–168CrossRefGoogle Scholar
  11. Forró L, Korovchinsky N, Kotov AA, Petrusek A (2008) Global diversity of cladocerans (Cladocera; Crustacea) in freshwater. Hydrobiologia 595:177–184CrossRefGoogle Scholar
  12. Frey DG (1982) Contrasting strategies of gamogenesis in northern and southern populations of Cladocera. Ecology 63:223–241CrossRefGoogle Scholar
  13. Grahame J (1976) Zooplankton of a tropical harbour: the numbers, composition, and response to physical factors of zooplankton in Kingston Harbour, Jamaica. J Exp Mar Biol Ecol 25:219–237CrossRefGoogle Scholar
  14. Gyllström M, Hansson LA (2004) Dormancy in freshwater zooplankton: induction, termination and the importance of benthic-pelagic coupling. Aquat Sci 66:274–295CrossRefGoogle Scholar
  15. Hairston NG Jr, Cáceres CA (1996) Distribution of crustacean diapauses: micro and macroevolutionary pattern and process. Hydrobiologia 320:27–44CrossRefGoogle Scholar
  16. Hairston NG Jr, Fox JA (2009) Egg banks. In: Likens GE (ed) Encyclopedia of inland waters, vol 3. Elsevier, Oxford, pp 659–666CrossRefGoogle Scholar
  17. Katechakis A, Stibor H (2004) Feeding selectivities on the marine cladocerans Penilia avirostris, Podon intermedius and Evadne nordmanni. Mar Biol 145:529–539CrossRefGoogle Scholar
  18. Kleiven OT, Larsson P, Hobaek A (1992) Sexual reproduction in Daphnia magna requires three stimuli. Oikos 65:197–206CrossRefGoogle Scholar
  19. Liang TH, Vega-Pérez LA (1995) Studies on chaetognaths off Ubatuba region, Brazil. II. Feeding habits. Bolm Inst Oceanogr S Paulo 43:27–40Google Scholar
  20. Lipej L, Mozetic P, Turk V, Malej A (1997) The trophic role of the marine cladoceran Penilia avirostris in the Gulf of Trieste. Hydrobiologia 360:197–203CrossRefGoogle Scholar
  21. Longhurst AR (1985) The structure and evolution of plankton communities. Progr Oceanogr 15:1–35CrossRefGoogle Scholar
  22. Lürling M, Roozen F, Van Donk E, Goser B (2003) Response of Daphnia to substances released from crowded congeners and conspecifics. J Plankton Res 25:967–978CrossRefGoogle Scholar
  23. Marazzo A, Valentin JL (2001) Spatial and temporal variations of Penilia avirostris and Evadne tergestina (Crustacea, Branchiopoda) in a tropical bay, Brazil. Hydrobiologia 445:133–139CrossRefGoogle Scholar
  24. Marazzo A, Valentin JL (2003a) Penilia avirostris (Crustacea, Ctenopoda) in a tropical bay: variations in density and aspects of reproduction. Acta Oecol 24:S251–S257CrossRefGoogle Scholar
  25. Marazzo A, Valentin JL (2003b) Population dynamics of Penilia avirostris (Dana, 1852) (Cladocera) in a tropical bay. Crustaceana 76:803–817CrossRefGoogle Scholar
  26. Marazzo A, Valentin JL (2004) Reproductive aspects of marine cladocerans Penilia avirostris and Pseudevadne tergestina (Crustacea, Branchiopoda) in the outer part of Guanabara Bay, Brazil. Braz J Biol 64:543–549CrossRefPubMedGoogle Scholar
  27. Mullin MM, Onbé T (1992) Diel reproduction and vertical distributions of the marine cladocerans, Evadne tergestina and Penilia avirostris, in contrasting coastal environments. J Plankton Res 14:41–59CrossRefGoogle Scholar
  28. Nip THM, Ho WY, Wong CK (2003) Feeding ecology of larval and juvenile black seabream (Acanthopagrus schlegeli) and Japanese seaperch (Lateolabrax japonicus) in Tolo Harbour, Hong Kong. Environ Biol Fish 66:197–209CrossRefGoogle Scholar
  29. Olmstead AW, LeBlanc GA (2002) Juvenoid hormone methyl farnesoate is a sex determinant in the crustacean Daphnia magna. J Exp Zool 293:736–739CrossRefPubMedGoogle Scholar
  30. Onbé T (1977) The biology of marine cladocerans in a warm temperate water. In: Proc symp warm water zoopl spec publ natn inst oceanogr. UNESCO, Goa, pp 383–398Google Scholar
  31. Onbé T (1985) Seasonal fluctuations in the abundance of populations of marine cladocerans and their resting eggs in the Inland Sea of Japan. Mar Biol 87:83–88CrossRefGoogle Scholar
  32. Onbé T (1999) Ctenopoda and Onychopoda (= Cladocera). In: Boltovskoy D (ed) South Atlantic zooplankton. Backhuys Publishers, Leiden, pp 797–813Google Scholar
  33. Onbé T, Ikeda T (1995) Marine cladocerans in Toyama Bay, southern Japan: seasonal occurrence and day-night vertical distributions. J Plankton Res 17:595–609CrossRefGoogle Scholar
  34. Paffenhöfer GA, Wester BT, Nicholas WD (1984) Zooplankton abundance in relation to state and type of intrusions onto the southeastern United States shelf during summer. J Mar Res 42:995–1017CrossRefGoogle Scholar
  35. Rocha CEF (1982) Distribution of the marine cladocerans (Crustacea, Branchiopoda) off Santos, Brazil. Bol Zool Univ S Paulo 7:155–169Google Scholar
  36. Roff JC, Hopcroft RR (1986) High precision microcomputer based measuring system for ecological research. Can J Fish Aquat Sci 43:2044–2048CrossRefGoogle Scholar
  37. Rose K, Roff JC, Hopcroft RR (2004) Production of Penilia avirostris in Kingston Harbour, Jamaica. J Plankton Res 26:605–615CrossRefGoogle Scholar
  38. Saldanha-Corrêa FMP, Gianesella SMF (2004) A microcosm approach on the potential effects of the vertical mixing of water masses over the primary productivity and phytoplankton biomass in the southern Brazilian coastal region. Braz J Oceanogr 52:167–182Google Scholar
  39. Smith AS, Acharya K, Jack J (2009) Overcrowding, food and phosphorus limitation effects on ephippia production and population dynamics in the invasive species Daphnia lumholtzi. Hydrobiologia 618:47–56CrossRefGoogle Scholar
  40. Tang K, Chen QC, Wong CK (1995) Distribution and biology of marine cladocerans in the coastal waters of southern China. Hydrobiologia 307:99–107CrossRefGoogle Scholar
  41. Turner JT, Tester PA, Ferguson RL (1988) The marine cladoceran Penilia avirostris and the ‘microbial loop’ of pelagic food webs. Limnol Oceanogr 33:245–255CrossRefGoogle Scholar
  42. Welschmeyer NA (1994) Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol Oceanogr 39:1985–1992CrossRefGoogle Scholar
  43. Wong CK, Ji C, Nip THM (2004) Diel cycle in the percentage abundance of parthenogenetic females with embryos of different developmental stages in four species of marine cladocerans. J Plankton Res 26:1095–1103CrossRefGoogle Scholar
  44. Wong CK, Vivian CYL, Chan A (2008) Diel cycles of reproduction and vertical migration in the marine cladocerans Pseudevadne tergestina and Penilia avirostris. J Plankton Res 30:65–73CrossRefGoogle Scholar
  45. Yoo KI, Kim SW (1987) Seasonal distribution of marine cladocerans in Chinhae Bay, Korea. J Oceanol Soc Kor 22:80–86Google Scholar
  46. Zaret TM (1972) Predators, invisible prey, and nature of polymorphism in Cladocera (Class Crustacea). Limnol Oceanogr 17:171–184CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Leonardo K. Miyashita
    • 1
  • Mayza Pompeu
    • 1
  • Salvador A. Gaeta
    • 1
  • Rubens M. Lopes
    • 1
  1. 1.Department of Biological Oceanography, Oceanographic InstituteUniversity of São PauloCidade UniversitáriaBrazil

Personalised recommendations