Skip to main content
Log in

Providing a common diet to different marine decapods does not standardize the fatty acid profiles of their larvae: a warning sign for experimentation using invertebrate larvae produced in captivity

Marine Biology Aims and scope Submit manuscript

Cite this article


Larval decapods are commonly produced in captivity and employed in experiments to evaluate interspecific physiological and biochemical differences. Currently, it is still unknown if different decapod species provided a common diet and exposed to identical abiotic conditions produce newly hatched larvae (NHL) with similar fatty acid (FA) profiles. This study analyzed the FA composition of NHL from five marine shrimp species (Lysmata amboinensis, L. boggessi, L. debelius, L. seticaudata and Rhynchocinetes durbanensis) fed a common diet and stocked at constant temperature. FA profiles of NHL differed significantly within and among genera. NHL from species unable to molt from zoea I to zoea II in the absence of food (L. amboinensis, L. debelius and R. durbanensis) displayed the lowest FA contents. Researchers must be aware that providing a common diet to different species, even if closely related, may not standardize the FA profile of NHL produced in captivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others


  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Article  Google Scholar 

  • Baeza JA, Schubart CD, Zillner P, Fuentes S, Bauer RT (2009) Molecular phylogeny of shrimps from the genus Lysmata (Caridea: Hippolytidae): the evolutionary origins of protandric simultaneous hermaphroditism and social monogamy. Biol J Linn Soc 96: 415-424. doi:10.1111/j.1095-8312.2008.01133.x

  • Bauer RT (2000) Simultaneous hermaphroditism in caridean shrimps: a unique and puzzling sexual system in the Decapoda. J Crustac Biol 20:116–128

    Google Scholar 

  • Bauer RT (2004) Remarkable shrimps: natural history and adaptations of the carideans. University of Okalahoma Press, Norman

  • Bauer RT (2006) Same sexual system but variable sociobiology: evolution of protandric simultaneous hermaphroditism in Lysmata shrimps. Integr Comp Biol 46:430–438. doi:10.1093/icb/icj036

    Article  Google Scholar 

  • Calado R (2008) Marine ornamental shrimp: biology, aquaculture and conservation. Blackwell, Oxford

    Google Scholar 

  • Calado R, Narciso L, Araujo R, Lin J (2003) Overview of marine ornamental shrimp aquaculture. In: Cato JC, Brown CL (eds) Marine ornamental species: collection, culture & conservation. Iowa State Press, Iowa, pp 221–230

  • Calado R, Rosa R, Nunes M, Narciso L (2005a) Amino and fatty acid dynamics of Lysmata seticaudata (Decapoda : Hippolytidae) embryos during early and late reproductive season. Mar Biol 147:341–351. doi:10.1007/s00227-005-1562-4

    Article  CAS  Google Scholar 

  • Calado R, Figueiredo J, Rosa R, Nunes ML, Narciso L (2005b) Effects of temperature, density, and diet on development, survival, settlement synchronism, and fatty acid profile of the ornamental shrimp Lysmata seticaudata. Aquaculture 245:221–237

    Article  CAS  Google Scholar 

  • Calado R, Vitorino A, Dionisio G, Dinis MT (2007) A recirculated maturation system for marine ornamental decapods. Aquaculture 263:68–74. doi:10.1016/j.aquaculture.2006.10.013

    Article  Google Scholar 

  • Calado R, Dionisio G, Bartilotti C, Nunes C, dos Santos A, Dinis MT (2008) Importance of light and larval morphology in starvation resistance and feeding ability of newly hatched marine ornamental shrimps Lysmata spp. (Decapoda: Hippolytidae). Aquaculture 283:56–63. doi:10.1016/j.aquaculture.2008.07.010

    Article  Google Scholar 

  • Castille FL, Lawrence AL (1989) The relationship between maturation and biochemical composition of the gonads and digestive glands of the shrimps Penaeus aztecus Ives and Penaeus setiferus (L.). J Crustac Biol 9:202–211

    Article  Google Scholar 

  • Clarke A (1982) Lipid-synthesis and reproduction in the polar shrimp Chorismus antarcticus. Mar Ecol-Prog Ser 9:81–90

    Article  CAS  Google Scholar 

  • Clarke A (1987) Temperature, latitude and reproductive effort. Mar Ecol-Prog Ser 38:89–99

    Article  Google Scholar 

  • Cohen Z, Vonshak A, Richmond A (1988) Effect of environmental conditions on fatty acid composition of the red algae Porphyridium cruentum: correlation to growth rate. J Phycol 24:328–332

    CAS  Google Scholar 

  • Coman GJ, Arnold SJ, Callaghan TR, Preston NP (2007) Effect of two maturation diet combinations on reproductive performance of domesticated Penaeus monodon. Aquaculture 263:75–83. doi:10.1016/j.aquaculture.2006.10.016

    Article  Google Scholar 

  • De Grave S, Pentcheff ND, Ahyong ST, Chan TY, Crandall KA, Dworschak PC, Felder DL, Feldmann RM, Fransen C, Goulding LYD, Lemaitre R, Low MEY, Martin JW, Ng PKL, Schweitzer CE, Tan SH, Tshudy D, Wetzer R (2009) A classification of living and fossil genera of decapod crustaceans. Raffles Bull Zool Sup 21:1–109

    Google Scholar 

  • Debelius H (2001) Crustacea guide of the world. IKAN—Unterwasserarchive Frankfurt

  • Gimenez L, Anger K (2005) Effects of temporary food limitation on survival and development of brachyuran crab larvae. J Plankton Res 27:485–494. doi:10.1093/plankt/fbi024

    Article  Google Scholar 

  • Harrison KE (1990) The role of nutrition in maturation, reproduction and embryonic development of decapod crustaceans: a review. J Shellfish Res 9:1–28

    Google Scholar 

  • Lepage G, Roy CC (1986) Direct transesterification of all classes of lipids in one-step reaction. J Lipid Res 27:114–120

    CAS  PubMed  Google Scholar 

  • Mourente G (1996) In vitro metabolism of C-14-polyunsaturated fatty acids in midgut gland and ovary cells from Penaeus kerathurus Forskal at the beginning of sexual maturation. Comp Biochem Physiol B Comp Biochem 115:255–266

    Article  Google Scholar 

  • Mueller LD, Altenberg L (1985) Statistical inference on measures of niche overlap. Ecology 66:1204–1210

    Article  Google Scholar 

  • Naessens E, Lavens P, Gomez L, Browdy CL, McGovernHopkins K, Spencer AW, Kawahigashi D, Sorgeloos P (1997) Maturation performance of Penaeus vannamei co-fed Artemia biomass preparations. Aquaculture 155:87–101

    Article  Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL, Solymos P, Stevens MHH, Wagner H (2009) Vegan: community ecology package. R package version 1.15-4.

  • Pandian TJ (1994) Arthropoda–Crustacea. In: Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates. Wiley, Chichester, pp 39–166

    Google Scholar 

  • Rhyne AL, Lin J (2006) A western Atlantic peppermint shrimp complex: redescription of Lysmata wurdemanni, description of four new species, and remarks on Lysmata rathbunae (Crustacea: Decapoda: Hippolytidae). Bull Mar Sci 79:165–204

    Google Scholar 

  • Rosa R, Calado R, Narciso L, Nunes ML (2007) Embryogenesis of decapod crustaceans with different life history traits, feeding ecologies and habitats: a fatty acid approach. Mar Biol 151:935–947. doi:10.1007/s00227-006-0535-6

    Article  Google Scholar 

  • Smith LL, Fox JM, Treece GD, McVey JP (1993) Intensive larviculture techniques. In: McVey JP (ed) Handbook of mariculture. CRC Press, Boca Raton, pp 153–172

    Google Scholar 

  • Stevens BG, Swiney KM, Buck L (2008) Thermal effects on embryo development and hatching for blue king crab Paralithodes platypus held in the laboratory, and a method for predicting dates of hatching. J Shellfish Res 27:1255–1263

    Article  Google Scholar 

  • Tong LJ, Moss GA, Pickering TD, Paewai MP (2000) Temperature effects on embryo and early larval development of the spiny lobster Jasus edwardsii, and description of a method to predict larval hatch times. Mar Freshw Res 51:243–248

    Article  Google Scholar 

  • Wear RG (1974) Incubation in the British Decapoda Crustacea, and the effects of temperature on the rate and success of embryonic development. J Mar Biol Assoc U K 54:745–762

    Article  Google Scholar 

  • Wouters R, Lavens P, Nieto J, Sorgeloos P (2001) Penaeid shrimp broodstock nutrition: an updated review on research and development. Aquaculture 202:1–21

    Article  Google Scholar 

Download references


The authors would like to thank Fundação para a Ciência e a Tecnologia (scholarship SFRH/BPD/18009/2004) from the Portuguese government for their financial support. We also thank two anonymous reviewers for their valuable comments, which helped to improve the final manuscript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ricardo Calado.

Additional information

Communicated by U. Sommer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Calado, R., Pimentel, T., Cleary, D.F.R. et al. Providing a common diet to different marine decapods does not standardize the fatty acid profiles of their larvae: a warning sign for experimentation using invertebrate larvae produced in captivity. Mar Biol 157, 2427–2434 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: