Skip to main content

Advertisement

Log in

Larvae of the pteropod Cavolinia inflexa exposed to aragonite undersaturation are viable but shell-less

  • Short Communication
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Larvae of the Mediterranean pteropod Cavolinia inflexa were maintained at controlled pHT values of 8.1, 7.82 and 7.51, equivalent, respectively, to pCO2 levels of 380, 857 and 1,713 μatm. At pHT 7.82, larvae exhibited malformations and lower shell growth, compared to the control condition. At pHT 7.51, the larvae did not make shells but were viable and showed a normal development. However, smaller shells or no shells will have both ecological (food web) and biogeochemical (export of carbon and carbonate) consequences. These results suggest that pteropod larvae, as well as the species dependent upon them or upon adults as a food resource, might be significantly impacted by ocean acidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Bé AWH, Gilmer RW (1977) A zoogeographic and taxonomic review of euthecosomatous pteropods. In: Ramsey A (ed) Oceanic micropaleontology, vol 1. Academic, London, pp 733–808

    Google Scholar 

  • Berner RA, Honjo S (1981) Pelagic sedimentation of aragonite: its geochemical significance. Science 3:940–942

    Article  Google Scholar 

  • Caldeira K, Wickett ME (2003) Oceanography: anthropogenic carbon and ocean pH. Nature 425:365

    Article  CAS  PubMed  Google Scholar 

  • Checkley DM (1980) The egg production of a marine planktonic copepod in relation to its food supply: laboratory studies. Limnol Oceanogr 25:430–446

    Article  CAS  Google Scholar 

  • Collier R, Dymond J, Honjo S, Manganini S, Francois R, Dunbar R (2000) The vertical flux of biogenic and lithogenic material in the Ross Sea: moored sediment trap observations 1996–1998. Deep-Sea Res Pt II 47:3491–3520

    Article  CAS  Google Scholar 

  • Comeau S, Gorsky G, Jeffree R, Teyssié J-L, Gattuso J-P (2009) Impact of ocean acidification on a key Arctic pelagic mollusc (Limacina helicina). Biogeosciences 6:1877–1882

    Article  CAS  Google Scholar 

  • Dickson AG, Sabine CL, Christian JR (eds) (2007) Guide to best practices for ocean CO2 measurements. PICES Special Publication 3

  • Feely RA, Sabine CL, Hernandez-Ayon JM, Ianson DHB (2008) Evidence for upwelling of corrosive ‘‘acidified’’ water onto the continental shelf. Science 320:1490–1492

    Article  CAS  PubMed  Google Scholar 

  • Fine M, Tchernov D (2007) Scleractinian coral species survive and recover from decalcification. Science 315:181

    Article  Google Scholar 

  • Francois R, Honjo S, Krishfield R, Manganini S (2002) Factors controlling the fluxof organic carbon to the bathypelagic zone of the ocean. Glob Biogeochem Cy 16:1087. doi:10.1029/2001GB001722

    Article  Google Scholar 

  • Gannefors C, Böer M, Kattner G, Graeve M, Eiane K, Gulliksen B, Hop H, Falk-Petersen S (2005) The Arctic sea butterfly Limacina helicina: lipids and life strategy. Mar Biol 147:169–177

    Article  Google Scholar 

  • Gattuso J-P, Frankignoulle M, Bourge I, Romaine S, Buddemeier RW (1998) Effect of calcium carbonate saturation of seawater on coral calcification. Glob Planet Change 18:37–46

    Article  Google Scholar 

  • Gazeau F, Quiblier C, Jansen JM, Gattuso J-P, Middelburg JJ, Heip CHR (2007) Impact of elevated CO2 on shellfish calcification. Geophys Res Lett 34:L07603. doi:10.1029/2006GL02855

    Article  Google Scholar 

  • Gilmer RW, Harbison GR (1986) Morphology and field behavior of pteropod molluscs: feeding methods in the families Cavoliniidae, Limacinidae and Peraclididae (Gastropoda: Thecosomata). Mar Biol 91:47–57

    Article  Google Scholar 

  • Harbison GR, Gilmer RW (1992) Diet of Limacina helicina (Gastropoda: Thecosomata) in Arctic waters in midsummer. Mar Ecol Prog Ser 77:125–134

    Google Scholar 

  • Hunt BP, Pakhomov EA, Hosie GW, Siegel V, Ward P, Bernard K (2008) Pteropods in Southern Ocean ecosystems. Prog Oceanogr 78:193–221

    Article  Google Scholar 

  • Karnovsky NJ, Hobson KA, Iverson S, Hunt GL Jr (2008) Seasonal changes in diets of seabirds in the North Water Polynya: a multiple-indicator approach. Mar Ecol Prog Ser 357:291–299

    Article  Google Scholar 

  • Lalli CM, Gilmer RW (1989) Pelagic snails. The biology of holoplanktonic gastropod mollusks. Stanford University Press, Stanford, California

    Google Scholar 

  • Langdon C, Atkinson MJ (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys Res 110:C09S07. doi:10.1029/2004JC002576

    Article  Google Scholar 

  • Lavigne H, Proye A, Gattuso J-P (2009) Portions of code and/or corrections. In: Epitalon J-M, Hofmann A, Gentili B, Orr J, Soetaert K (eds) Seacarb: calculates parameters of the seawater carbonate system. R package version 2.2. http://CRAN.R-project.org/package=seacarb

  • Mc Laren IA (1965) Some relationships between temperature and egg size, body size, development rate, and fecundity, of the copepod pseudocalanus. Limnol Oceanogr 10:528–538

    Article  Google Scholar 

  • Ohman MD, Lavaniegos BE, Townsend AW (2009) Multi-decadal variations in calcareous holozooplankton in the California current system: thecosome pteropods, heteropods, and foraminifera. Geophys Res Lett 36:L18608. doi:10.1029/2009GL039901

    Article  Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA (2005) Anthropogenic ocean acidification over the 21st century and its impact on calcifying organisms. Nature 437:681–686

    Article  CAS  PubMed  Google Scholar 

  • Pawlowski J, Bolivar I, Fahrni J, De Vargas C, Bowser S (1999) Naked foraminiferans revealed. Nature 399:27

    Article  CAS  Google Scholar 

  • Rampal J (1975) Les Thécosomes (mollusques pélagiques) Systématique et Evolution—Ecologie et Biogéographie Méditerranéennes, Ph.D. thesis, University of Aix-Marseille I, Marseille, 485 pp

  • Reynaud S, Leclercq N, Romaine-Lioud S, Ferrier-Pagès C, Jaubert J, Gattuso J-P (2003) Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Glob Change Biol 9:1660–1668

    Article  Google Scholar 

  • Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, Morel FMM (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–367

    Article  CAS  PubMed  Google Scholar 

  • Ries JB, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:1131–1134

    Article  CAS  Google Scholar 

  • Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371

    Article  CAS  PubMed  Google Scholar 

  • Steinacher M, Joos F, Frolicher TL, Plattner G-K, Doney SC (2009) Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences 6:515–533

    Article  CAS  Google Scholar 

  • Yamamoto-Kawai M, McLaughlin FA, Carmack EC, Nishino S, Shimada K (2009) Aragonite undersaturation in the Arctic Ocean: effects of ocean acidification and sea ice melt. Science 326:1098–1100

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks are due to John Dolan for his helpful comments on this paper. This work is a contribution to the “European Project on Ocean Acidification” (EPOCA) which received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 211384. EPOCA is endorsed by the International Programmes IMBER, LOICZ and SOLAS. This work also received funding from the “Fondation Total” through the REMECCA project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Comeau.

Additional information

Communicated by U. Sommer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MPG 19656 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Comeau, S., Gorsky, G., Alliouane, S. et al. Larvae of the pteropod Cavolinia inflexa exposed to aragonite undersaturation are viable but shell-less. Mar Biol 157, 2341–2345 (2010). https://doi.org/10.1007/s00227-010-1493-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-010-1493-6

Keywords

Navigation