Skip to main content
Log in

Mitochondrial genomic divergence in coelacanths (Latimeria): slow rate of evolution or recent speciation?

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Dating the divergence between the two known living species of coelacanths has remained a difficult issue because of the very ancient origin of this lineage of fish, which is more closely related to tetrapods than to other fishes. We sequenced the complete mitochondrial genome of a recently captured individual of the Indonesian coelacanth in order to solve this issue. Using an approach based on loglinear models, we studied the molecular divergence between the two species of coelacanths and three other pairs of species, one that has diverged recently (Pan) and two that have diverged more distantly in the past. The loglinear models showed that the divergence between the two species of coelacanths is not significantly different from the two species of Pan. A detailed gene by gene analysis of the patterns of nucleotide and amino acid substitutions between these two pairs of species further supports the similarity of these divergences. On the other hand, a molecular dating analysis suggested a much older origin of the two coelacanth species (between 20 and 30 million years ago). We discuss the potential reasons for this discrepancy. The analysis of new individuals of the Indonesian coelacanth will certainly help to solve this issue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agresti A (2002) Categorical data analysis, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Proceedings of the second international symposium on information theory, Akadémia Kiado, Budapest, pp 267–281

  • Balloux F (2009) The worm in the fruit of the mitochondrial DNA trees. Heredity doi:10.1038/hdy.2009.122

    Google Scholar 

  • Balloux F, Handley LJ, Jombart T, Liu H, Manica A (2009) Climate shaped the worldwide distribution of human mitochondrial DNA sequence variation. Proc R Soc Lond B 276:3447–3455

    Article  CAS  Google Scholar 

  • Bazin E, Glémin S, Galtier N (2006) Population size does not influence mitochondrial genetic diversity in animals. Science 312:570–572

    Article  CAS  PubMed  Google Scholar 

  • Benton MJ, Donoghue PCJ (2007) Paleontological evidence to date the tree of life. Mol Biol Evol 24(1):26–53. Erratum 24:889–891

    Article  CAS  PubMed  Google Scholar 

  • Charif D, Lobry J (2007) SeqinR 1.0-2: A contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis. In: Bastolla U, Porto HRM, Vendruscolo M (eds) Structural approaches to sequence evolution: molecules, networks, populations. Springer, New York, pp 207–232

  • Erdmann MV (1999) An account of the first living coelacanth known to scientists from Indonesian waters. Environ Biol Fish 54:439–443

    Article  Google Scholar 

  • Erdmann MV, Caldwell RL, Jewett SL, Tjakrawidjaja A (1999) The second recorded living coelacanth from north Sulawesi. Environ Biol Fish 54(4):445–451

    Article  Google Scholar 

  • Gordon AL (1998) Coelacanth populations may go with the flow. Nature 395:634

    Article  CAS  Google Scholar 

  • Heibl C (2010) LAGOPUS: R-package for Bayesian relaxed-clock molecular dating. http://www.christophheibl.de

  • Holder MT, Erdmann MV, Wilcox TP, Caldwell RL, Hillis DM (1999) Two living species of coelacanths? Proc Natl Acad Sci USA 96(22):12616–12620

    Article  CAS  PubMed  Google Scholar 

  • Inoue JG, Miya M, Venkatesh B, Nishida M (2005) The mitochondrial genome of Indonesian coelacanth Latimeria menadoensis (Sarcopterygii: Coelacanthiformes) and divergence time estimation between the two coelacanths. Gene 349:227–235

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lanfear R, Thomas JA, Welch JJ, Brey T, Bromham L (2007) Metabolic rate does not calibrate the molecular clock. Proc Natl Acad Sci USA 104(39):15388–15393

    Article  CAS  PubMed  Google Scholar 

  • Miller HC, Moore JA, Allendorf FW, Daugherty CH (2009) The evolutionary rate of tuatara revisited. Trends Genet 25(1):13–15

    Article  CAS  PubMed  Google Scholar 

  • Nabholz B, Glémin S, Galtier N (2009) The erratic mitochondrial clock: variations of mutation rate, not population size, affect mtDNA diversity across birds and mammals. BMC Evol Biol 9:54

    Article  PubMed  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, Oxford

    Google Scholar 

  • Nelson JS (2006) Fishes of the world, 4th edn. Wiley, Hoboken

    Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20(2):289–290

    Article  CAS  PubMed  Google Scholar 

  • Parham JF, Irmis RB (2008) Caveats on the use of fossil calibrations for molecular dating: a comment on Near et al. Am Nat 171(1):132–136

    Article  PubMed  Google Scholar 

  • Pereira SL, Baker AJ (2006) A mitogenomic timescale for birds detects variable phylogenetic rates of molecular evolution and refutes the standard molecular clock. Mol Biol Evol 23:1731–1740

    Article  CAS  PubMed  Google Scholar 

  • Perry GH, Tito RY, Verrelli BC (2007) The evolutionary history of human and chimpanzee Y-chromosome gene loss. Mol Biol Evol 24(3):853–859

    Article  CAS  PubMed  Google Scholar 

  • Piganeau G, Eyre-Walker A (2009) Evidence for variation in the effective population size of animal mitochondrial DNA. Plos One 4(2):e4396

    Article  PubMed  Google Scholar 

  • Pouyaud L, Wirjoatmodjo S, Rachmatika I, Tjakrawidjaja A, Hadiaty R, Hadie W (1999) A new species of coelacanth. C R Acad Sci III 322:261–267

    CAS  PubMed  Google Scholar 

  • Pulquério MJF, Nichols RA (2007) Dates from the molecular clock: how wrong can we be? Trends Ecol Evol 22(4):180–184

    Article  PubMed  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

  • Raaum RL, Sterner KN, Noviello CM, Stewart CB, Disotell TR (2005) Catarrhine primate divergence dates estimated from complete mitochondrial genomes: concordance with fossil and nuclear DNA evidence. J Hum Evol 48(3):237–257

    Article  PubMed  Google Scholar 

  • Santini F, Harmon LJ, Carnevale G, Alfaro ME (2009) Did genome duplication drive the origin of teleosts? A comparative study of diversification in ray-finned fishes. BMC Evol Biol 9:194

    Article  PubMed  Google Scholar 

  • Sasaki T, Sato T, Miura S, Bwathondi POJ, Ngatunga BP, Okada N (2007) Mitogenomic analysis for coelacanths (Latimeria chalumnae) caught in Tanzania. Gene 389(1):73–79

    Article  CAS  PubMed  Google Scholar 

  • Schartl M, Hornung U, Hissmann K, Schauer J, Fricke H (2005) Relatedness among east African coelacanths. Nature 435:901

    Article  CAS  PubMed  Google Scholar 

  • Smith JLB (1939) A living fish of Mesozoic type. Nature 143:455–456

    Article  Google Scholar 

  • Springer VG (1999) Are the Indonesian and western Indian Ocean coelacanths conspecific: a prediction. Environ Biol Fish 54(4):453–456

    Article  Google Scholar 

  • Subramanian S, Hay JM, Mohandesan E, Millar CD, Lambert DM (2009) Molecular and morphological evolution in tuatara are decoupled. Trends Genet 25(1):16–18

    Article  CAS  Google Scholar 

  • Thomas JA, Welch JJ, Woolfit M, Bromham L (2006) There is no universal molecular clock for invertebrates, but rate variation does not scale with body size. Proc Natl Acad Sci USA 103(19):7366–7371

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882

    Google Scholar 

  • Thorne JL, Kishino H (2002) Divergence time and evolutionary rate estimation with multilocus data. Syst Biol 51(5):689–702

    Article  PubMed  Google Scholar 

  • Thorne JL, Kishino H, Painter IS (1998) Estimating the rate of evolution of the rate of molecular evolution. Mol Biol Evol 15(12):1647–1657

    CAS  PubMed  Google Scholar 

  • Won YJ, Hey J (2005) Divergence population genetics of chimpanzees. Mol Biol Evol 22(2):297–307

    Article  CAS  PubMed  Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591

    Article  CAS  PubMed  Google Scholar 

  • Yee TW (2009) VGAM: vector generalized linear and additive models. R package version 0.7-8. http://www.stat.auckland.ac.nz/~yee/VGAM

  • Yokoyama S, Tada T (2000) Adaptive evolution of the African and Indonesian coelacanths to deep-sea environments. Gene 261(1):35–42

    Article  CAS  PubMed  Google Scholar 

  • Zardoya R, Meyer A (1997) The complete DNA sequence of the mitochondrial genome of a “living fossil,” the coelacanth (Latimeria chalumnae). Genetics 146:995–1010

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Thibaut Jombart and an anonymous reviewer for their constructive comments on a previous version of this paper. This research was financially supported by an Action Thématique Incitative of the Institut de Recherche pour le Développement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Paradis.

Additional information

Communicated by M. I. Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sudarto, Lalu, X.C., Kosen, J.D. et al. Mitochondrial genomic divergence in coelacanths (Latimeria): slow rate of evolution or recent speciation?. Mar Biol 157, 2253–2262 (2010). https://doi.org/10.1007/s00227-010-1492-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-010-1492-7

Keywords

Navigation