Skip to main content
Log in

Matching spatial distributions of the sea star Echinaster sepositus and crustose coralline algae in shallow rocky Mediterranean communities

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Understanding why a species is present in a particular location and the consequences of its presence is complex but necessary to identify the mechanisms that generate and maintain ecological diversity. The common sea star Echinaster sepositus can be either very abundant or non-existing in nearby localities of the western Mediterranean. Yet, the factors that shape its distribution and the impact of the sea star on natural communities remain uninvestigated. Here, we quantified multiple biotic and abiotic factors that may affect the distribution of E. sepositus and tested whether this sea star can shape the organization of the community it inhabits. Our results showed that the distribution of this sea star was highly contagious and positively correlated with the abundance and distribution of crustose coralline algae from tens of meters to tens of kilometers. Despite significant differences in community composition between localities with high or low abundance of the sea star, experimental addition of E. sepositus to natural communities failed to shift the composition of the algal community in 4 months. Overall, our results suggest that within habitat variability in the abundance of crustose coralline algae may explain the abundance of E. sepositus at multiple geographic scales, emphasizing the need to investigate small-scale processes at larger geographic scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alves FMA, Chicharo LM, Serrao E, Abreu AD (2001) Algal cover and sea urchin spatial distribution at Madeira Island (NE Atlantic). Sci Ma 65:383–392

    Google Scholar 

  • Barker MF (1977) Observations on settlement of brachiolaria larvae of Stichaster australis (Verrill) and Coscinasterias calamaria (Gray) (Echinodermata Asteroidea) in laboratory and on shore. J Exp Mar Biol Ecol 30:95–108

    Article  Google Scholar 

  • Becerro MA, Goetz G, Paul VJ, Scheuer PJ (2001) Chemical defenses of the sacoglossan mollusk Elysia rufescens and its host alga Bryopsis sp. J Chem Ecol 27:2287–2299

    Article  CAS  PubMed  Google Scholar 

  • Benedetti-Cecchi L, Cinelli F (1995) Habitat heterogeneity, sea urchin grazing and the distribution of algae in littoral rock pools on the west-coast of Italy (Western Mediterranean). Mar Ecol Prog Ser 126:203–212

    Article  Google Scholar 

  • Boudouresque CF (1985) Groupes ecologiques d’algues marines et phytocenoses benthiques en Mediterranée Nord-Occidentale: une revue. Giorn Bot Ital 118:7–42

    Google Scholar 

  • Britton-Simmons KH (2006) Functional group diversity, resource preemption and the genesis of invasion resistance in a community of marine algae. Oikos 113:395–401

    Article  Google Scholar 

  • Cebrian E, Uriz MJ (2006) Grazing on fleshy seaweeds by sea urchins facilitates sponge Cliona viridis growth. Mar Ecol Prog Ser 323:83–89

    Article  Google Scholar 

  • Chapman MG, Underwood AJ (2008) Scales of variation of gastropod densities over multiple spatial scales: comparison of common and rare species. Mar Ecol Prog Ser 354:147–160

    Article  Google Scholar 

  • Clarke KR, Ainsworth M (1993) A method of linking multivariate community structure to environmental variables. Mar Ecol Prog Ser 92:205–219

    Article  Google Scholar 

  • Daume S, Brand-Gardner S, Woelkerling WJ (1999) Settlement of abalone larvae (Haliotis laevigata Donovan) in response to non-geniculate coralline red algae (Corallinales, Rhodophyta). J Exp Mar Biol Ecol 234:125–143

    Article  Google Scholar 

  • Davidowitz G, Rosenzweig ML (1998) The latitudinal gradient of species diversity among North American grasshoppers (Acrididae) within a single habitat: a test of the spatial heterogeneity hypothesis. J Biogeog 25:553–560

    Article  Google Scholar 

  • Diez I, Santolaria A, Gorostiaga JM (2003) The relationship of environmental factors to the structure and distribution of subtidal seaweed vegetation of the western Basque coast (N Spain). Estuar Coast Shelf Sci 56:1041–1054

    Article  Google Scholar 

  • Duggins DO (1983) Starfish predation and the creation of mosaic patters in a kelp dominated community. Ecology 58:1218–1236

    Google Scholar 

  • Dumas P, Kulbicki M, Chifflet S, Fichez R, Ferraris J (2007) Environmental factors influencing urchin spatial distributions on disturbed coral reefs (New Caledonia, South Pacific). J Exp Mar Biol Ecol 344:88–100

    Article  Google Scholar 

  • Elliot JM (1977) Some methods for the statistical analysis of samples of benthic invertebrates. Freshwater Biological Association, UK

    Google Scholar 

  • Entrambasaguas L, Perez-Ruzafa A, Garcia-Charton JA, Stobart B, Bacallado JJ (2008) Abundance, spatial distribution and habitat relationships of echinoderms in the Cabo Verde Archipelago (eastern Atlantic). Mar Freshwater Res 59:477–488

    Article  Google Scholar 

  • Eriksson O (1996) Regional dynamics of plants: a review of evidence for remnant, source-sink and metapopulations. Oikos 77:248–258

    Article  Google Scholar 

  • Fabricius K, De’ath G (2001) Environmental factors associated with the spatial distribution of crustose coralline algae on the Great Barrier Reef. Coral Reefs 19:303–309

    Article  Google Scholar 

  • Ferguson JC (1969) Feeding activity in Echinaster and its induction with dissolved nutrients. Biol Bull 136:374–384

    Article  CAS  Google Scholar 

  • Garrabou J, Riera J, Zabala M (1998) Landscape pattern indices applied to Mediterranean subtidal rocky benthic communities. Landscape Ecol 13:225–247

    Article  Google Scholar 

  • Garrabou J, Riera J, Zabala M (2002) Structure and dynamics of north-western Mediterranean rocky benthic communities along a depth gradient. Estuar Coast Shelf Sci 55:493–508

    Article  Google Scholar 

  • Gili JM, Ros J (1985) Study and cartography of the benthic communities of Medes Islands (NE Spain). Mar Ecol PSZNI 6:219–238

    Article  Google Scholar 

  • Gotelli NJ, Ellison AM (2004) A primer of ecological statistics. Sinauer, Massachusetts

    Google Scholar 

  • Grace JB (1999) The factors controlling species density in herbaceous plant communities: an assessment. Perspect Plant Ecol Evol Syst 2:1–28

    Article  Google Scholar 

  • Harmelin-Vivien M, Le Direach L, Bayle-Sempere J, Charbonnel E, Garcia-Charton JA, Ody D, Perez-Ruzafa A, Renones O, Sanchez-Jerez P, Valle C (2008) Gradients of abundance and biomass across reserve boundaries in six Mediterranean marine protected areas: evidence of fish spillover? Biol Conserv 141:1829–1839

    Article  Google Scholar 

  • Harrington L, Fabricius K, De’Ath G, Negri A (2004) Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology 85:3428–3437

    Article  Google Scholar 

  • Helmuth B, Broitman BR, Blanchette CA, Gilman S, Halpin P, Harley CDG, O’Donnell MJ, Hofmann GE, Menge B, Strickland D (2006) Mosaic patterns of thermal stress in the rocky intertidal zone: implications for climate change. Ecol Monogr 76:461–479

    Article  Google Scholar 

  • Hereu B (2006) Depletion of palatable algae by sea urchins and fishes in a Mediterranean subtidal community. Mar Ecol Prog Ser 313:95–103

    Article  Google Scholar 

  • Hereu B, Zabala M, Sala E (2008) Multiple controls of community structure and dynamics in a sublittoral marine environment. Ecology 89:3423–3435

    Article  PubMed  Google Scholar 

  • Hewitt JE, Thrush SE, Halliday J, Duffy C (2005) The importance of small-scale habitat structure for maintaining beta diversity. Ecology 86:1619–1626

    Article  Google Scholar 

  • Heyward AJ, Negri AP (1999) Natural inducers for coral larval metamorphosis. Coral Reefs 18:273–279

    Article  Google Scholar 

  • Himmelman JH, Dutil C (1991) Distribution, population structure and feeding of subtidal seastars in the northern Gulf of St. Lawrence. Mar Ecol Prog Ser 76:61–72

    Article  Google Scholar 

  • Hines AH, Long WC, Terwin JR, Thrush SF (2009) Facilitation, interference, and scale: the spatial distribution of prey patches affects predation rates in an estuarine benthic community. Mar Ecol Prog Ser 385:127–135

    Article  Google Scholar 

  • Hubbell SP, Ahumada JA, Condit R, Foster RB (2001) Local neighborhood effects on long-term survival of individual trees in a neotropical forest. Ecol Res 16:859–875

    Article  Google Scholar 

  • Huggett MJ, Williamson JE, de Nys R, Kjelleberg S, Steinberg PD (2006) Larval settlement of the common Australian sea urchin Heliocidaris erythrogramma in response to bacteria from the surface of coralline algae. Oecologia 149:604–619

    Article  PubMed  Google Scholar 

  • Hyman LH (1955) The invertebrates: echinodermata: the coelomate Bilateria. International Books & Periodicals Supply Services, Delhi

    Google Scholar 

  • Izsak C, Price ARG (2001) Measuring beta-diversity using a taxonomic similarity index, and its relation to spatial scale. Mar Ecol Prog Ser 215:69–77

    Article  Google Scholar 

  • Johnson CR, Sutton DC (1994) Bacteria on the surface of crustose coralline algae induce metamorphosis of the crown-of-thorns starfish Acanthaster Planci. Mar Biol 120:305–310

    Article  Google Scholar 

  • Keddy PA (1992) A pragmatic approach to functional ecology. Funct Ecol 6:621–626

    Article  Google Scholar 

  • Littler MM, Littler DS (1984) Relationships between macroalgal functional form groups and substrata stability in a sub-tropical rocky-intertidal system. J Exp Mar Biol Ecol 74:13–34

    Article  Google Scholar 

  • Maldonado M, Uriz MJ (1998) Microrefuge exploitation by subtidal encrusting sponges: patterns of settlement and post-settlement survival. Mar Ecol Prog Ser 174:141–150

    Article  Google Scholar 

  • Martín D (1987) Anélidos poliquetos asociados a las concreciones de algas calcáreas del litoral catalán. Miscel Zool 11:61–75

    Google Scholar 

  • Mas Cornet G (2005) Proyecto de reintroducción del tritón marino en la Costa Brava. Manual de manejo en cautividad. Centro de Estudios del Mar de Begur-NEREO. http://www.nereo.org/images/corn/Manual%20de%20manejo%20en%20cautividad.pdf

  • McClanahan TR (1998) Predation and the distribution and abundance of tropical sea urchin populations. J Exp Mar Biol Ecol 221:231–255

    Article  Google Scholar 

  • Menge BA (1982) Effects of feeding on the environment: Asteroidea. In: Jangoux M, Lawrence JM (eds) Echinoderm nutrition. Balkema, Rotterdam, pp 521–551

    Google Scholar 

  • Moran MD (2003) Arguments for rejecting the sequential Bonferroni in ecological studies. Oikos 100:403–405

    Article  Google Scholar 

  • Morse DE, Hooker N, Morse ANC, Jensen RA (1988) Control of larval metamorphosis and recruitment in sympatric agariciid corals. J Exp Mar Biol Ecol 116:193–217

    Article  Google Scholar 

  • Ocaña Martín A, Sánchez Tocino L, López González S, Viciana Martín JF (2000) Guía submarina de invertebrados no artrópodos, 2ª Edición. Editorial Comares, Granada

    Google Scholar 

  • Palacin C, Giribet G, Carner S, Dantart L, Turon X (1998a) Low densities of sea urchins influence the structure of algal assemblages in the western Mediterranean. J Sea Res 39:281–290

    Article  Google Scholar 

  • Palacin C, Turon X, Ballesteros M, Giribet G, López S (1998b) Stock evaluation of three littoral echinoid species on the Catalan coast (North-Western Mediterranean). Mar Ecol PSZNI 19:163–177

    Article  Google Scholar 

  • Pérès JM, Picard JN (1964) Nouveau manuel de bionomie benthique de la Mer Mediterranee. Rec Trav St MarEndoume 31:1–137

    Google Scholar 

  • Perner J, Voigt W (2007) Measuring the complexity of interaction webs using vertical links between functional groups. Agr Ecosyst Environ 120:192–200

    Article  Google Scholar 

  • Riedl R (1983) Fauna y Flora del Mar Mediterráneo. Ediciones Omega, Barcelona

    Google Scholar 

  • Rilov G, Schiel DR (2006) Seascape-dependent subtidal-intertidal trophic linkages. Ecology 87:731–744

    Article  PubMed  Google Scholar 

  • Risk MJ (1972) Fish diversity on a coral reef in the Virgin Islands. Atoll Res Bull pp 1–6

  • Roberts DE, Cummins SP, Davis AR, Chapman MG (2006) Structure and dynamics of sponge-dominated assemblages on exposed and sheltered temperate reefs. Mar Ecol Prog Ser 321:19–30

    Article  Google Scholar 

  • Ros JD, Romero J, Ballesteros E, Gili JM (1985) Diving in blue water. The benthos. In: Margalef R (ed) Western Mediterranean. Pergamon Press, London, pp 233–295

    Google Scholar 

  • Rotjan RD, Lewis SM (2008) Impact of coral predators on tropical reefs. Mar Ecol Prog Ser 367:73–91

    Article  Google Scholar 

  • Rowley RJ (1990) Newly settled sea urchins in a kelp bed and urchin barren ground - a comparison of growth and mortality. Mar Ecol Prog Ser 62:229–240

    Article  CAS  Google Scholar 

  • Ruitton S, Francour P, Boudouresque CF (2000) Relationships between algae, benthic herbivorous invertebrates and fishes in rocky sublittoral communities of a temperate sea (Mediterranean). Estuar Coast Shelf Sci 50:217–230

    Article  Google Scholar 

  • Sarà M, Vacelet J (1973) Écologie des Démosponges. In: Grasse PP (ed) Traité de zoologie (anatomie, systematique, biologie). Masson & Cie, Paris, pp 462–576

    Google Scholar 

  • SPSS (1999) Systat 9: statistics I. SPSS Inc, Chicago

    Google Scholar 

  • Steneck RS, Watling L (1982) Feeding capabilities and limitation of herbivorous molluscs: a functional group approach. Mar Biol 68:299–319

    Article  Google Scholar 

  • Tabachnick BG, Fidell LS (2001) Using multivariate statistics. Allyn & Bacon, Needham Heights

    Google Scholar 

  • Tilman D (1985) The resource-ratio hypothesis of plant succession. Am Nat 125:827–852

    Article  Google Scholar 

  • Tilman D (1994) Competition and biodiversity in spatially structured habitats. Ecology 75:2–16

    Article  Google Scholar 

  • Torres LG, Read AJ, Halpin P (2008) Fine-scale habitat modelling of a top marine predator: do prey data improve predictive capacity? Ecol Appl 18:1702–1717

    Article  PubMed  Google Scholar 

  • Tuya F, Haroun RJ (2006) Spatial patterns and response to wave exposure of shallow water algal assemblages across the Canarian Archipelago: a multi-scaled approach. Mar Ecol Prog Ser 311:15–28

    Article  Google Scholar 

  • Underwood AJ, Chapman MG (1996) Scales of spatial patterns of distribution of intertidal invertebrates. Oecologia 107:212–224

    Article  Google Scholar 

  • Uthicke S, Schaffelke B, Byrne M (2009) A boom-bust phylum? Ecological and evolutionary consequences of density variations in echinoderms. Ecol Monogr 79:3–24

    Article  Google Scholar 

  • Vasserot J (1961) Caractère hautement spécialisé du régime alimentaire chez les astérides Echinaster sepositus et Henricia sanguinolenta, prédateurs de spongiaires. Bull Soc Zool Fr 86:796–809

    Google Scholar 

  • Virgilio M, Airoldi L, Abbiati M (2006) Spatial and temporal variations of assemblages in a Mediterranean coralligenous reef and relationships with surface orientation. Coral Reefs 25:265–272

    Article  Google Scholar 

  • Westfall PH, Young SS (1993) On adjusting P-values for multiplicity. Biometrics 49:941–944

    Article  Google Scholar 

  • Williamson JE, Creese RG (1996) Small invertebrates inhabiting the crustose alga Pseudolithoderma sp (Ralfsiaceae) in northern New Zealand. New Zeal J Mar Freshw 30:221–232

    Article  Google Scholar 

  • Yasuda H, Ishikawa H (1999) Effects of prey density and spatial distribution on prey consumption of the adult predatory ladybird beetle. J Appl Entomol 123:585–589

    Article  Google Scholar 

  • Zajac RN, Lewis RS, Poppe LJ, Twichell DC, Vozarik J, DiGiacomo-Cohen ML (2003) Responses of infaunal populations to benthoscape structure and the potential importance of transition zones. Limnol Oceanogr 48(2):829–842

    Article  Google Scholar 

Download references

Acknowledgments

The present study was funded by the Spanish Ministry of Science and Education (MPA-STAR, grant 200730I005 and MARMOL, CMT2007-66635). Special thanks to N. Viladrich, O. Sacristán, A. Canyelles, and R. Bernardello for technical and field assistance. We are grateful to Patrik Kraufvelin and three anonymous reviewers whose useful comments greatly improved the manuscript. This article is part of Villamor’s PhD thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Villamor.

Additional information

Communicated by P. Kraufvelin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villamor, A., Becerro, M.A. Matching spatial distributions of the sea star Echinaster sepositus and crustose coralline algae in shallow rocky Mediterranean communities. Mar Biol 157, 2241–2251 (2010). https://doi.org/10.1007/s00227-010-1489-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-010-1489-2

Keywords

Navigation