Connectivity between marine reserves and exploited areas in the philopatric reef fish Chrysoblephus laticeps (Teleostei: Sparidae)

Abstract

‘No-take’ marine protected areas (MPAs) are successful in protecting populations of many exploited fish species, but it is often unclear whether networks of MPAs are adequately spaced to ensure connectivity among reserves, and whether there is spillover into adjacent exploited areas. Such issues are particularly important in species with low dispersal potential, many of which exist as genetically distinct regional stocks. The roman, Chrysoblephus laticeps, is an overexploited, commercially important sparid endemic to South Africa. Post-recruits display resident behavior and occupy small home ranges, making C. laticeps a suitable model species to study genetic structure in marine teleosts with potentially low dispersal ability. We used multilocus data from two types of highly variable genetic markers (mitochondrial DNA control region and seven microsatellite markers) to clarify patterns of genetic connectivity and population structure in C. laticeps using samples from two MPAs and several moderately or severely exploited regions. Despite using analytical tools that are sensitive to detect even subtle genetic structure, we found that this species exists as a single, well-mixed stock throughout its core distribution. The high levels of connectivity identified among sites support the findings of previous studies that have indicated that inshore MPAs are an adequate tool for managing overexploited temperate reef fishes. Even though dispersal of adult C. laticeps out of MPAs is limited, the fact that the large adults in these reserves produce exponentially more offspring than their smaller counterparts in exploited areas makes MPAs a rich source of recruits. We nonetheless caution against concluding that the lack of structure identified in C. laticeps and several other southern African teleosts can be considered to be representative of marine teleosts in this region in general. Many such species are represented in more than one marine biogeographic province and may be comprised of regionally adapted stocks that require individual management.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Attwood CG, Allen JC, Clasen PJ (2002) Nearshore surface current patterns in the Tsitsikamma National Park, South Africa. S Afr J Mar Sci 24:151–160

    Google Scholar 

  2. Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    CAS  PubMed  Google Scholar 

  3. Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Nat Acad Sci USA 98:4563–4568

    Article  CAS  PubMed  Google Scholar 

  4. Bohnsack JA (1990) The potential of marine fishery reserves for reef fish management in the US Southern Atlantic. NOAA tech. Memo NMFS-SEFC-261, Miami

  5. Bolton JJ, Anderson RJ (1997) Marine vegetation. In: Cowling RM, Richardson DM, Pierce SM (eds) Vegetation of Southern Africa. Cambridge University Press, Cambridge, pp 348–375

    Google Scholar 

  6. Boyd AJ, Taunton-Clark J, Oberholster GPJ (1992) Spatial features of the near-surface and midwater circulation patterns off western and southern South Africa and their role in the life histories of various commercially fished species. S Afr J Mar Sci 12:189–206

    Google Scholar 

  7. Bradbury IR, Laurel B, Snelgrove PVR, Bentzen P, Campana SE (2008) Global patterns in marine dispersal estimates: the influence of geography, taxonomic category and life history. Proc R Soc B 275:1803–1809

    Article  PubMed  Google Scholar 

  8. Brouwer SL, Griffiths MH, Roberts MJ (2003) Adult movement and larval dispersal of Argyrozona argyrozona (Pisces: Sparidae) from a temperate marine protected area. Afr J Mar Sci 25:395–402

    Google Scholar 

  9. Butler GS (1980) Aspects of the biology of Caffrogobius caffer (Günther) (Pisces: Teleostei: Gobiidae) in the Eastern Cape. MSc Thesis, Rhodes University, Grahamstown

  10. Buxton CD (1984) Feeding biology of the roman Chrysoblephus laticeps (Pisces: Sparidae). S Afr J Mar Sci 2:33–42

    Google Scholar 

  11. Buxton CD (1987) Life history changes of two reef fish species in exploited and unexploited marine environments in South Africa. PhD thesis, Rhodes University, Grahamstown, South Africa, pp 215

  12. Buxton CD (1990) The reproductive biology of Chrysoblephus laticeps (Cuvier) and C. cristiceps (Teleostei: Sparidae). J Zool Lond 220:497–511

    Article  Google Scholar 

  13. Buxton CD (1992) The application of yield-per-recruit models to two South African sparid reef species, with special consideration to sex change. Fish Res 15:1–16

    Article  Google Scholar 

  14. Buxton CD, Allen JC (1989) Mark and recapture studies of two reef sparids in the Tsitsikamma Coastal National Park. Koedoe 32:39–45

    Google Scholar 

  15. Buxton CD, Smale MJ (1984) A preliminary investigation of the ichthyofauna of the Tsitsikamma Coastal National Park. Koedoe 27:13–24

    Google Scholar 

  16. Buxton CD, Smale MJ (1989) Abundance and distribution patterns of three temperate marine reef fish (Teleostei: Sparidae) in exploited and unexploited areas off the Southern Cape coast. J Appl Ecol 26:441–451

    Article  Google Scholar 

  17. Cowen RK, Lwiza KMM, Sponaugle S, Paris CB, Olson DB (2000) Connectivity of marine populations: open or closed? Science 287:857–859

    Article  CAS  PubMed  Google Scholar 

  18. Crawford NG (2010) smogd: software for the measurement of genetic diversity. Mol Ecol Res 10:556–557

    Article  Google Scholar 

  19. Davis JA (1996) Investigations into the larval rearing of two South Africa sparid species. MSc thesis, Department of Ichthyology and Fisheries Science, Rhodes University, South Africa

  20. Dawson MN (2001) Phylogeography in coastal marine animals: a solution from California? J Biogeogr 28:723–736

    Article  Google Scholar 

  21. Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581

    Article  CAS  PubMed  Google Scholar 

  22. Edkins MT, Teske PR, Griffiths CL, Papadopulos I (2007) Genetic and morphological analyses suggest that southern African crown crabs, Hymenosoma orbiculare, represent five distinct species. Crustaceana 80:667–683

    Article  Google Scholar 

  23. Evans BS, Sweijd NA, Bowie RCK, Cook PA, Elliott NG (2004) Population genetic structure of the perlemoen, Haliotis midae in South Africa: evidence of range expansion and founder events. Mar Ecol Prog Ser 270:163–172

    Article  Google Scholar 

  24. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application of human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  Google Scholar 

  25. Excoffier L, Laval G, Scheider S (2005) arlequin version 3.0: integrated software package for population genetic data analysis. Evol Bioinformatics Online 1:47–50

    CAS  Google Scholar 

  26. Gell FR, Roberts CM (2003) Benefits beyond boundaries: the fishery effects of marine reserves. Trends Ecol Evol 18:448–455

    Article  Google Scholar 

  27. Gomez-Uchida D, Banks MA (2005) Microsatellite analyses of spatial genetic structure in darkblotched rockfish (Sebastes crameri): is pooling samples safe? Can J Fish Aquat Sci 62:1874–1886

    Article  CAS  Google Scholar 

  28. Götz A, Kerwath SE, Attwood CG, Sauer WWH (2008a) Effects of fishing on population structure and life history of roman Chrysoblephus laticeps (Sparidae). Mar Ecol Prog Ser 362:245–259

    Article  Google Scholar 

  29. Götz A, Cowley PD, Winker H (2008b) Selected fishery and population parameters of eight shore-angling species in the Tsitsikamma National Park no-take marine reserve. Afr J Mar Sci 30:519–532

    Article  Google Scholar 

  30. Götz A, Kerwath SE, Attwood CG, Sauer WWH (2009) Effects of fishing on a temperate reef community in South Africa 1: ichthyofauna. Afr J Mar Sci 31:241–251

    Article  Google Scholar 

  31. Goudet J (2001) fstat, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http://www.unil.ch/izea/softwares/fstat.html

  32. Griffiths MH (2000) Long-term trends in catch and effort of commercial linefish off South Africa’s Cape Province: snapshots of the 20th century. S Afr J Mar Sci 22:81–110

    Google Scholar 

  33. Griffiths MH, Wilke CG (2002) Long-term movement patterns of five temperate reef-fishes (Pisces: Sparidae): implications for marine reserves. Mar Freshw Res 53:233–244

    Article  Google Scholar 

  34. Hartl DL, Clark AG (1997) Principles of population genetics. Sinauer Associates, Sunderland

    Google Scholar 

  35. Hauser L, Carvalho GR (2008) Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish Fish 9:333–362

    Google Scholar 

  36. Hey J, Nielsen R (2004) Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics 167:747–760

    Article  CAS  PubMed  Google Scholar 

  37. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Res 9:1322–1332

    Article  Google Scholar 

  38. Jost L (2008) G ST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026

    Article  PubMed  Google Scholar 

  39. Kerwath SE (2005) Empirical studies of fish movement behaviour and their application in spatially explicit models for marine conservation. PhD thesis, Rhodes University, South Africa

  40. Kerwath SE, Götz A, Attwood CG, Cowley PD, Sauer WWH (2007) Movement pattern and home range of Roman Chrysoblephus laticeps. Afr J Mar Sci 29:93–103

    Article  Google Scholar 

  41. Kerwath SE, Götz A, Attwood CG, Cowley PD, Sauer WHH (2008) The effect of marine protected ares on an exploited population of sex-changing temperate reef fish: an individual-based model. Afr J Mar Sci 30:337–350

    Article  Google Scholar 

  42. Klopper AW (2005) Intraspecific genetic variation in the percoid teleosts Argyrosomus japonicus (Temminck and Schlegel, 1843) and Pomadasys commersonnii (Lacepède, 1801) as inferred from the mitochondrial control region. MSc thesis, University of Pretoria, South Africa

  43. Kramer DL, Chapman MR (1999) Implications of fish home range size and relocation for marine reserve function. Environ Biol Fish 55:65–79

    Article  Google Scholar 

  44. Kuhner MK (2006) lamarc 2.0: maximum likelihood and Bayesian estimation of population parameters. Bioinformatics 22:768–770

    Article  CAS  PubMed  Google Scholar 

  45. Leberg PL (2002) Estimating allelic richness: effects of sample size and bottlenecks. Mol Ecol 11:2445–2449

    Article  CAS  PubMed  Google Scholar 

  46. Leslie H (2005) A synthesis of marine conservation planning approaches. Conserv Biol 19:1701–1713

    Article  Google Scholar 

  47. Levin LA (2006) Recent progress in understanding larval dispersal: new directions and digressions. Integr Comp Biol 46:282–297

    Article  CAS  Google Scholar 

  48. Mann BQ (2000) South African marine linefish status reports. In: Mann BQ (ed) Oceanographic Research Institute, special publication. Durban, S Afr Assoc Mari Biol Res, vol 7, pp 257

  49. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  50. McQuaid CD, Phillips TE (2000) Limited wind-driven dispersal of the intertidal mussel larvae: in situ evidence from the plankton and the spread of the invasive species Mytilus galloprovincialis in South Africa. Mar Ecol Prog Ser 201:211–220

    Article  Google Scholar 

  51. Möller LM, Wiszniewski J, Allen SJ, Beheregaray LB (2007) Habitat type promotes rapid and extremely localized genetic differentiation in dolphins. Mar Freshw Res 58:640–648

    Article  Google Scholar 

  52. Neethling M, Matthee CA, Bowie RCK, von der Heyden S (2008) Evidence of successful dispersal across a major oceanographic barrier in the southern African endemic, Caffrogobius caffer (Teleostei: Gobiidae). BMC Evol Biol 8:325

    Article  PubMed  Google Scholar 

  53. Nei M, Chesser RK (1983) Estimation of fixation indices and gene diversities. Ann Human Genet 47:253–259

    Article  CAS  Google Scholar 

  54. Nei M, Tajima F (1981) DNA polymorphism detectable by restriction endonucleases. Genetics 97:145–167

    CAS  PubMed  Google Scholar 

  55. Norris AT, Bradley DG, Cunningham EP (1999) Microsatellite genetic variation between and within farmed and wild Atlantic salmon (Salmo salar) populations. Aquaculture 180:247–264

    Article  Google Scholar 

  56. Norton OB (2005) The population structure of two estuarine fish species, Atherina breviceps (Pisces: Atherinidae) and Gilchristella aestuaria (Pisces: Clupeidae), along the southern African coastline. MSc thesis, Rhodes University, South Africa

  57. Oosthuizen CJ (2007) Genetic variation within the Cape Stumpnose, Rhabdosargus holubi Steindachner (Teleostei: Sparidae). MSc thesis, University of Pretoria, South Africa

  58. Orrell TM, Carpenter KE, Musick JA, Graves JE (2002) Phylogenetic and biogeographic analysis of the Sparidae (Perciformes: Percoidei) from cytochrome b sequences. Copeia 2002:618–631

    Article  Google Scholar 

  59. Palumbi SR (1994) Genetic divergence, reproductive isolation and marine speciation. Annu Rev Ecol Syst 25:547–572

    Article  Google Scholar 

  60. Peakall R, Smouse PE (2006) genalex6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  61. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  62. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  63. Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280–1283

    Article  Google Scholar 

  64. Rice WA (1989) Analyzing tables of statistical tests. Evolution 43:223–249

    Article  Google Scholar 

  65. Roberts CM, Andelman S, Branch G, Bustamante RH, Castilla JC, Dugan J, Halpern BS, Lafferty KD, Leslie H, Lubchenco J, McArdle D, Possingham HP, Ruckelshaus M, Warner RR (2003) Ecological criteria for evaluating candidate sites for marine reserves. Ecol Appl 13:S199–S214

    Article  Google Scholar 

  66. Roberts CM, Hawkins JP, Gell FR (2005) The role of marine reserves in achieving sustainable fisheries. Phil Trans R Soc B 360:123–132

    Article  PubMed  Google Scholar 

  67. Rocha LA, Robertson DR, Roman J, Bowen BW (2005) Ecological speciation in tropical reef fishes. Proc R Soc B 272:573–579

    PubMed  Google Scholar 

  68. Ruzzante DE (1998) A comparison of several measures of genetic distance and population structure with microsatellite data bias and sampling variance. Can J Fish Aquat Sci 55:1–14

    Article  Google Scholar 

  69. Sale PF, Cowen RK, Danilowicz BS, Jones GP, Kritzer JP, Lindeman KC, Planes S, Polunin NVC, Russ GT, Sadovy YV, Steneck RS (2005) Critical science gaps impede use of no-take fishery reserves. Trends Ecol Evol 20:74–80

    Article  PubMed  Google Scholar 

  70. Sauer WHH, Hecht T, Britz PJ, Mather D (2006) An economical and sectoral study of the South African fishing industry, vol 2: fisheries profile. Report prepared for Marine Coastal Management by Rhodes University

  71. Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47:264–279

    Article  Google Scholar 

  72. Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

    CAS  PubMed  Google Scholar 

  73. Smith MKS (2005) Towards a new approach for coastal governance with an assessment of the Plettenberg Bay linefisheries. MSc dissertation, Rhodes University, Grahamstown

  74. Stobutzki IC (2001) Marine reserves and the complexity of larval dispersal. Rev Fish Biol Fish 10:515–518

    Article  Google Scholar 

  75. Tamura K (1992) Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C content biases. Mol Biol Evol 9:678–687

    CAS  PubMed  Google Scholar 

  76. Teske PR, Papadopoulos I, Zardi GI, McQuaid CD, Griffiths CL, Edkins MT, Barker NP (2007a) Implications of life history for genetic structure and migration rates of five southern African coastal invertebrates: planktonic, abbreviated and direct development. Mar Biol 152:697–711

    Article  Google Scholar 

  77. Teske PR, Oosthuizen A, Papadopoulos I, Barker NP (2007b) Phylogeographic structure of South African Octopus vulgaris revisited: identification of a second lineage near Durban harbour. Mar Biol 151:2119–2122

    Article  Google Scholar 

  78. Teske PR, Froneman PW, McQuaid CD, Barker NP (2007c) Phylogeographic structure of the caridean shrimp Palaemon peringueyi in South Africa: further evidence for intraspecific genetic units associated with marine biogeographic provinces. Afr J Mar Sci 29:253–258

    Article  Google Scholar 

  79. Teske PR, Papadopoulos I, Newman BK, Dworschak PC, McQuaid CD, Barker NP (2008) Oceanic dispersal barriers, adaptation and larval retention: an interdisciplinary assessment of potential factors maintaining a phylogeographic break between sister lineages of an African prawn. BMC Evol Biol 8:341

    Article  PubMed  Google Scholar 

  80. Teske PR, Winker H, McQuaid CD, Barker NP (2009a) A tropical/subtropical biogeographic disjunction in southeastern Africa separates two Evolutionarily Significant Units of an estuarine prawn. Mar Biol 165:1265–1275

    Article  Google Scholar 

  81. Teske PR, McLay C, Sandoval-Castillo J, Papadopoulos I, Newman BK, Griffiths CL, McQuaid CD, Barker NP, Borgonie G, Beheregaray LB (2009b) Tri-locus sequence data reject a “Gondwanan origin hypothesis” for the African/South Pacific crab genus Hymenosoma. Mol Phylogenet Evol 53:23–33

    Article  CAS  PubMed  Google Scholar 

  82. Teske PR, Cowley PD, Forget FRG, Beheregaray LB (2009c) Microsatellite markers for the roman, Chrysoblephus laticeps (Teleostei: Sparidae), an overexploited seabream from South Africa. Mol Ecol Res 9:1162–1164

    Article  CAS  Google Scholar 

  83. Tilney RL, Nelson G, Radloff SE, Buxton CD (1996) Ichthyoplankton distribution and dispersal in the Tsitsikamma National Park marine reserve, South Africa. S Afr J Mar Sci 17:1–14

    Google Scholar 

  84. Tolley KA, Groeneveld JC, Gopal K, Matthee CA (2005) Mitochondrial DNA panmixia in spiny lobster Palinurus gilchristi suggests a population expansion. Mar Ecol Prog Ser 297:225–231

    Article  CAS  Google Scholar 

  85. von der Heyden S (2009) Why do we need to integrate population genetics into South African Marine Protected Area planning? Afr J Mar Sci 31:263–269

    Article  Google Scholar 

  86. von der Heyden S, Prochazka K, Bowie RCK (2008) Significant population structure amidst expanding populations of Clinus cottoides (Perciformes, Clinidae): application of molecular tools to marine conservation planning in South Africa. Mol Ecol 17:4812–4826

    Article  PubMed  Google Scholar 

  87. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  88. Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed  Google Scholar 

  89. Zardi GI, McQuaid CD, Teske PR, Barker NP (2007) Unexpected genetic structure of mussel populations in South Africa: indigenous Perna perna and invasive Mytilus galloprovincialis. Mar Ecol Prog Ser 337:135–144

    Article  CAS  Google Scholar 

  90. Zardi GI, Nicastro KR, McQuaid CD, Hancke L, Helmuth B (2010) Selection and dispersal, twin drivers for genetic structure in intertidal mussels. J Biogeogr (in press)

Download references

Acknowledgments

We are grateful to the Tsitsikamma research angling team, Rhett Bennett, Russell Chalmers, JD Filmalter, Bruce Donovan, Constantin von der Heyden, Alex Weaver and Sven Kerwath for providing samples. The images of Chrysoblephus laticeps were taken from the book “Coastal fishes of southern Africa”, copyright SAIAB & NISC (http://www.coastalfishes.nisc.co.za), and the map was drawn by Fabien Forget and Bronwyn McLean. Peter Teske was supported by a Postdoctoral Research Fellowship for overseas study from the National Research Foundation and an overseas study grant from the Ernest Oppenheimer Memorial Trust. Sophie von der Heyden was supported by a Claude Harris Leon Postdoctoral Fellowship. This contribution represents manuscript no. 37 of the Molecular Ecology Group for Marine Research (MEGMAR), an initiative initially funded with grant MQ A006162 to L. B. Beheregaray.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. R. Teske.

Additional information

Communicated by M. I. Taylor.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Teske, P.R., Forget, F.R.G., Cowley, P.D. et al. Connectivity between marine reserves and exploited areas in the philopatric reef fish Chrysoblephus laticeps (Teleostei: Sparidae). Mar Biol 157, 2029–2042 (2010). https://doi.org/10.1007/s00227-010-1471-z

Download citation

Keywords

  • Genetic Structure
  • Spatial Genetic Structure
  • Distance Class
  • Microsatellite Data
  • Dispersal Potential