Addadi L, Joester D, Nudelman F, Weiner S (2006) Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chem Eur J 12:980–987
Google Scholar
Appellöf A (1893) Die Schalen von Sepia, Spirula, and Nautilus. Studien über den Bau und das Wachstum. Kongl Svenska Vetenskaps-Akademiens Handlingar 25:1–106
Google Scholar
Berge JA, Bjerkeng B, Pettersen O, Schaanning MT, Oxnevad S (2006) Effects of increased seawater concentrations of CO2 on the growth of the bivalve Mytilus edulis L. Chemosphere 62:681–687
Article
CAS
Google Scholar
Bettencourt V, Guerra A (2001) Age studies based on daily growth increments in statoliths and growth lamellae in cuttlebone of cultured Sepia officinalis. Mar Biol 139:327–334
Article
Google Scholar
Birchall JD, Thomas NL (1983) On the architecture and function of cuttlefish bone. J Mater Sci 18:2081–2086
Article
CAS
Google Scholar
Boletzky S, Wiedmann J (1978) Schulp-Wachstum bei Sepia officinalis in Abhängigkeit von ökologischen parametern. Neues Jb Geol Paläont Abh 157:103–106
Google Scholar
Cameron JN, Iwama GK (1987) Compensation of progressive hypercapnia in channel catfish and blue crabs. J Exp Biol 122:183–197
Google Scholar
Checkley DM, Dickson AG, Takahashi M, Radich A, Eisenkolb N, Asch R (2009) Elevated CO2 enhances otolith growth in young fish. Science 342:1683
Article
Google Scholar
Dauphin Y (1996) The organic matrix of coleoid cephalopod shells: molecular weights and isoelectric properties of the soluble matrix in relation to biomineralization processes. Mar Biol 125:525–529
CAS
Google Scholar
Dauphin Y, Marin F (1995) The compositional analysis of recent cephalopod shell carbohydrates by Fourier transform infrared spectrometry and high performance anion exchange-pulse amperometric detection. Experientia 51:278–283
Article
CAS
Google Scholar
Denton EJ (1974) Croonian Lecture, 1973-Buoyancy and lives of modern and fossil cephalopods. Proc Roy Soc Lon B 185:273–299
Article
Google Scholar
Denton EJ, Gilpin-Brown JB (1961a) The buoyancy of the cuttlefish Sepia officinalis. J Mar Biol Assoc UK 41:319–342
Article
Google Scholar
Denton EJ, Gilpin-Brown JB (1961b) The effect of light on the buoyancy of the cuttlefish. J Mar Biol Assoc UK 41:343–350
Article
Google Scholar
Denton EJ, Gilpin-Brown JB (1961c) The distribution of gas and liquid within the cuttlebone. J Mar Biol Assoc UK 41:365–381
Article
Google Scholar
Denton EJ, Gilpin-Brown JB (1971) Further observations on the buoyancy of Spirula. J Mar Biol Assoc UK 51:363–373
Article
Google Scholar
Denton EJ, Gilpin-Brown JB, Howarth JV (1961) The osmotic mechanism of the cuttlebone. J Mar Biol Assoc UK 41:351–363
Article
Google Scholar
Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res Part A 34:1733–1743
Article
CAS
Google Scholar
Dove ADM (2005) Microstructural features of excretory calcinosis in the lobster, Homarus americanus Milne-Edwards. J Fish Dis 28:313–316
Article
CAS
Google Scholar
Dove ADM, LoBue C, Bowser P, Powell M (2004) Excretory calcinosis: a new fatal disease of wild American lobsters Homarus americanus. Dis Aquat Org 58:215–221
Article
Google Scholar
Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432
Article
CAS
Google Scholar
Fivelstad S, Olsen AB, Kloften H, Ski H, Stefansson S (1999) Effects of carbon dioxide on Atlantic salmon (Salmo salar L.) smolts at constant pH bicarbonate rich freshwater. Aquaculture 178:171–187
Article
Google Scholar
Fivelstad S, Olsen AB, Asgard T, Baeverfjord G, Rasmussen T, Vindheim T, Stefansson S (2003) Long-term sublethal effects of carbon dioxide on Atlantic salmon smolts (Salmo salar L.): ion regulation, haematology, element composition, nephrocalcinosis and growth parameters. Aquaculture 215:301–319
Article
CAS
Google Scholar
Florek M, Fornal E, Gomez-Romero P, Zieba E, Paszkowicz W, Lekki J, Nowak J, Kuczumow A (2009) Complementary microstructural and chemical analyses of Sepia officinalis endoskeleton. Mater Sci Eng C 29:1220–1226
Article
CAS
Google Scholar
Foss A, Røsnes BA, Øiestad V (2003) Graded environmental hypercapnia in juvenile spotted wolfish (Anarhichas minor Olafsen): effects on growth, food conversion efficiency and nephrocalcinosis. Aquaculture 220:607–617
Article
Google Scholar
le Goff R, Gauvrit E, Du Sel GP, Daguzan J (1998) Age group determination by analysis of the cuttlebone of the cuttlefish Sepia officinalis. J Moll Stud 64:183–193
Article
Google Scholar
Gutowska MA, Pörtner HO, Melzner F (2008) Growth and calcification in the cephalopod Sepia officinalis under elevated seawater pCO2. Mar Ecol Prog Ser 373:303–309
Article
CAS
Google Scholar
Gutowska MA, Melzner F, Langenbuch M, Bock C, Claireaux G, Pörtner HO (2010) Acid-base regulatory ability of the cephalopod (Sepia officinalis) in response to environmental hypercapnia. J Comp Physiol B 180:323–335
Article
CAS
Google Scholar
Hall KC, Fowler AJ, Geddes MC (2007) Evidence for multiple year classes of the giant Australian cuttlefish Sepia apama in northern Spencer Gulf, South Australia. Rev Fish Biol Fish 17:367–384
Article
Google Scholar
Hare PE, Abelson PH (1965) Amino acid composition of some calcified proteins. Carnegie Instn Wash Yb 64:223–232
CAS
Google Scholar
Hayashi M, Kita J, Ishimatsu A (2004) Acid-base responses to lethal aquatic hypercapnia in three marine fishes. Mar Biol 144:153–160
Article
CAS
Google Scholar
Hosfeld CD, Engevik A, Mollan T, Lunde TM, Waagbo R, Olsen AB, Breck O, Stefansson S, Fivelstad S (2008) Long-term separate and combined effects of environmental hypercapnia and hyperoxia in Atlantic salmon (Salmo salar L.) smolts. Aquaculture 280:146–153
Article
Google Scholar
Larsen BK, Pörtner HO, Jensen FB (1997) Extra- and intracellular acid-bases balance and ionic regulation in cod (Gadus morhua) during combined and isolated exposures to hypercapnia and copper. Mar Biol 128:337–346
Article
CAS
Google Scholar
Lenfant C, Aucutt C (1966) Measurement of blood gases by gas chromatography. Resp Physiol 1:398–407
Article
CAS
Google Scholar
Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations. ORNL/CDIAC-105, carbon dioxide information analysis center, Oak Ridge National Laboratory, Oak Ridge, TN. Available at: http://cdiac.esd.ornl.gov/oceans/co2rprt.html
Lindinger MI, Lauren DJ, McDonald DG (1984) Acid–base balance in the sea mussel, Mytilus edulis. III. Effects of environmental hypercapnia on intra- and extracellular acid–base balance. Mar Biol Let 5:371–381
CAS
Google Scholar
Marie B, Marin F, Marie A, Bedouet L, Dubost L, Alcaraz G, Milet C, Luquet G (2009) Evolution of nacre: biochemistry and proteomics of the shell organic matrix of the cephalopod Nautilus macromphalus. Chembiochem 10:1495–1506
Article
CAS
Google Scholar
Marin F, Luquet G (2004) Molluscan shell proteins. Comptes Rendus Palevol. 3:469–490
Article
Google Scholar
Marin F, Corstjens P, de Gaulejac B, Vrind-DE Jong ED, Westbroek P (2000) Muscins and molluscan calcification–Molecular characterization of mucoperlin, a novel mucin-like protein from the nacreous shell layer of the fan mussel Pinna nobilis (Bivalvia, Pteriomorphia). J Biol Chem 275:20667–20675
Article
CAS
Google Scholar
Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907
Article
CAS
Google Scholar
Melzner F, Göbel S, Langenbuch M, Gutowska MA, Pörtner HO, Lucassen M (2009a) Effects of long-term hypercapnic exposure on cod (Gadus morhua) swimming performance, metabolism and gill Na+/K+ -ATPase. Aquat Tox 92:30–37
Article
CAS
Google Scholar
Melzner F, Gutowska MA, Langenbuch M, Dupont S, Lucassen M, Thorndyke M, Bleich M, Pörtner HO (2009b) Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6:2313–2331
Michaelidis B, Ouzounis C, Paleras A, Pörtner HO (2005) Effects of long-term moderate hypercapnia on acid-base balance and growth in marine mussel Mytilus galloprovincialis. Mar Ecol Prog Ser 293:109–118
Article
Google Scholar
Michaelidis B, Spring A, Pörtner HO (2007) Effects of long-term acclimation to environmental hypercapnia on extracellular acid-base status and metabolic capacity in Mediterranean fish Sparus aurata. Mar Biol 150:1417–1429
Article
Google Scholar
Neige P, Boletzky SV (1997) Morphometrics of the shell of three Sepia species (Mollusca: Cephalopoda): intra- and interspecific variation. Zool Beitr N F 2:137–156
Google Scholar
Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A et al (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686
Article
CAS
Google Scholar
Pane EF, Barry JP (2007) Extracellular acid-base regulation during short-term hypercapnia is effective in a shallow-water crab, but ineffective in a deep-sea crab. Mar Ecol Prog Ser 334:1–9
Article
CAS
Google Scholar
Pörtner HO (2008) Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar Ecol Prog Ser 373:203–217
Article
Google Scholar
Pörtner HO, Boutilier RG, Tang Y, Toews DP (1990) Determination of intracellular pH and pCO2 after metabolic inhibition by fluoride and nitrilotriacetic acid. Resp Physiol 81:255–274
Article
Google Scholar
Pörtner HO, Langenbuch M, Reipschläger A (2004) Biological impact of elevated ocean CO2 concentration: lessons from animal physiology and Earth history. J Oceanogr 60:705–718
Article
Google Scholar
Ries JB, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:1131–1134
Article
CAS
Google Scholar
Seibel BA, Walsh PJ (2003) Biological impacts of deep-sea carbon dioxide injection inferred from indices of physiological performance. J Exp Biol 206:641–650
Article
CAS
Google Scholar
Sherrard K (2000) Cuttlebone morphology limits habitat depth in eleven species of Sepia (Cephalopoda: Sepiidae). Biol Bull 198:404–414
Article
CAS
Google Scholar
Shirayama Y, Thornton H (2005) Effects of increased atmospheric CO2 on shallow water marine benthos. J Geo Res 110:C09S08
Google Scholar
Spicer JI, Raffo A, Widdicombe S (2007) Influence of CO2 related seawater acidification on extracellular acid-base balance in the velvet swimming crab Necora puber. Mar Biol 151:1117–1125
Article
Google Scholar
Toews DP, Holeton GF, Heisler N (1983) Regulation of the acid-base status during environmental hypercapnia in the marine teleost fish Conger conger. J Exp Biol 107:9–20
CAS
Google Scholar
Tompsett DH (1939) Sepia. L.M.B.C. Memoirs on typical british marine plants and animals. University Press of Liverpool, Liverpool
Google Scholar
Truchot JP (1984) Water carbonate alkalinity as a determinant of hemolymph acid-base balance in the shore crab, Carcinus maenas, a study at two different ambient pCO2 and pO2 levels. J Comp Physiol 154:601–606
CAS
Google Scholar
Vandeputte M, Dupont-Nivet M, Haffray P, Chavanne H, Cenadelli S, Parati K, Vidal MO, Bergnet A, Chatain B (2009) Response to domestication and selection for growth in the European sea bass (Dicentrarchus labrax) in separate and mixed tanks. Aquaculture 286:20–27
Article
Google Scholar
Ward P, Boletzky SV (1984) Shell implosion depth and implosion morphologies in three species of Sepia (Cephalopoda) from the Mediterranean Sea. J Mar Biol Assoc UK 64:955–966
Article
Google Scholar
Webber DM, Aitken J, O’Dor RK (2000) Costs of vertical locomotion and vertical dynamics of cephalopods and fish. Physiol Biochem Zool 73:651–662
Article
CAS
Google Scholar
Weiner S (1979) Aspartic acid-rich proteins major components of the soluble organic matrix of mollusk shells. Calc Tiss Int 29:163–167
Article
CAS
Google Scholar
Weiner S, Traub W (1984) Macromolecules in mollusc shells and their functions in biomineralization. Phil Trans R Soc Lond B 304:425–434
Article
CAS
Google Scholar
Wendling J (1987) On the buoyancy system of Sepia officinalis L. (Cephalopoda). Dissertation, University of Basel, Switzerland
Westermann B, Schmidtberg H, Beuerlein K (2005) Functional morphology of the mantle of Nautilus pompilius (Mollusca, Cephalopoda). J Morph 264:277–285
Article
Google Scholar
Wiedmann J, Boletzky S (1982) Wachstum und Differenzierung des Schulps von Sepia officinialis unter künstlichen Aufzuchtbedingungen–Grenzen der Anwendung im palökologischen Modell. N J Geol Pal Abh 164:118–133
Google Scholar
Wilt FH, Killian CE, Livingston BT (2003) Development of calcareous skeletal elements in invertebrates. Differentiation 71:237–250
Article
CAS
Google Scholar