Skip to main content

Cuttlebone calcification increases during exposure to elevated seawater pCO2 in the cephalopod Sepia officinalis

Abstract

Changes in seawater carbonate chemistry that accompany ongoing ocean acidification have been found to affect calcification processes in many marine invertebrates. In contrast to the response of most invertebrates, calcification rates increase in the cephalopod Sepia officinalis during long-term exposure to elevated seawater pCO2. The present trial investigated structural changes in the cuttlebones of S. officinalis calcified during 6 weeks of exposure to 615 Pa CO2. Cuttlebone mass increased sevenfold over the course of the growth trail, reaching a mean value of 0.71 ± 0.15 g. Depending on cuttlefish size (mantle lengths 44–56 mm), cuttlebones of CO2-incubated individuals accreted 22–55% more CaCO3 compared to controls at 64 Pa CO2. However, the height of the CO2-exposed cuttlebones was reduced. A decrease in spacing of the cuttlebone lamellae, from 384 ± 26 to 195 ± 38 μm, accounted for the height reduction The greater CaCO3 content of the CO2-incubated cuttlebones can be attributed to an increase in thickness of the lamellar and pillar walls. Particularly, pillar thickness increased from 2.6 ± 0.6 to 4.9 ± 2.2 μm. Interestingly, the incorporation of non-acid-soluble organic matrix (chitin) in the cuttlebones of CO2-exposed individuals was reduced by 30% on average. The apparent robustness of calcification processes in S. officinalis, and other powerful ion regulators such as decapod cructaceans, during exposure to elevated pCO2 is predicated to be closely connected to the increased extracellular [HCO3 ] maintained by these organisms to compensate extracellular pH. The potential negative impact of increased calcification in the cuttlebone of S. officinalis is discussed with regard to its function as a lightweight and highly porous buoyancy regulation device. Further studies working with lower seawater pCO2 values are necessary to evaluate if the observed phenomenon is of ecological relevance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Addadi L, Joester D, Nudelman F, Weiner S (2006) Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chem Eur J 12:980–987

    Google Scholar 

  • Appellöf A (1893) Die Schalen von Sepia, Spirula, and Nautilus. Studien über den Bau und das Wachstum. Kongl Svenska Vetenskaps-Akademiens Handlingar 25:1–106

    Google Scholar 

  • Berge JA, Bjerkeng B, Pettersen O, Schaanning MT, Oxnevad S (2006) Effects of increased seawater concentrations of CO2 on the growth of the bivalve Mytilus edulis L. Chemosphere 62:681–687

    Article  CAS  Google Scholar 

  • Bettencourt V, Guerra A (2001) Age studies based on daily growth increments in statoliths and growth lamellae in cuttlebone of cultured Sepia officinalis. Mar Biol 139:327–334

    Article  Google Scholar 

  • Birchall JD, Thomas NL (1983) On the architecture and function of cuttlefish bone. J Mater Sci 18:2081–2086

    Article  CAS  Google Scholar 

  • Boletzky S, Wiedmann J (1978) Schulp-Wachstum bei Sepia officinalis in Abhängigkeit von ökologischen parametern. Neues Jb Geol Paläont Abh 157:103–106

    Google Scholar 

  • Cameron JN, Iwama GK (1987) Compensation of progressive hypercapnia in channel catfish and blue crabs. J Exp Biol 122:183–197

    Google Scholar 

  • Checkley DM, Dickson AG, Takahashi M, Radich A, Eisenkolb N, Asch R (2009) Elevated CO2 enhances otolith growth in young fish. Science 342:1683

    Article  Google Scholar 

  • Dauphin Y (1996) The organic matrix of coleoid cephalopod shells: molecular weights and isoelectric properties of the soluble matrix in relation to biomineralization processes. Mar Biol 125:525–529

    CAS  Google Scholar 

  • Dauphin Y, Marin F (1995) The compositional analysis of recent cephalopod shell carbohydrates by Fourier transform infrared spectrometry and high performance anion exchange-pulse amperometric detection. Experientia 51:278–283

    Article  CAS  Google Scholar 

  • Denton EJ (1974) Croonian Lecture, 1973-Buoyancy and lives of modern and fossil cephalopods. Proc Roy Soc Lon B 185:273–299

    Article  Google Scholar 

  • Denton EJ, Gilpin-Brown JB (1961a) The buoyancy of the cuttlefish Sepia officinalis. J Mar Biol Assoc UK 41:319–342

    Article  Google Scholar 

  • Denton EJ, Gilpin-Brown JB (1961b) The effect of light on the buoyancy of the cuttlefish. J Mar Biol Assoc UK 41:343–350

    Article  Google Scholar 

  • Denton EJ, Gilpin-Brown JB (1961c) The distribution of gas and liquid within the cuttlebone. J Mar Biol Assoc UK 41:365–381

    Article  Google Scholar 

  • Denton EJ, Gilpin-Brown JB (1971) Further observations on the buoyancy of Spirula. J Mar Biol Assoc UK 51:363–373

    Article  Google Scholar 

  • Denton EJ, Gilpin-Brown JB, Howarth JV (1961) The osmotic mechanism of the cuttlebone. J Mar Biol Assoc UK 41:351–363

    Article  Google Scholar 

  • Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res Part A 34:1733–1743

    Article  CAS  Google Scholar 

  • Dove ADM (2005) Microstructural features of excretory calcinosis in the lobster, Homarus americanus Milne-Edwards. J Fish Dis 28:313–316

    Article  CAS  Google Scholar 

  • Dove ADM, LoBue C, Bowser P, Powell M (2004) Excretory calcinosis: a new fatal disease of wild American lobsters Homarus americanus. Dis Aquat Org 58:215–221

    Article  Google Scholar 

  • Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432

    Article  CAS  Google Scholar 

  • Fivelstad S, Olsen AB, Kloften H, Ski H, Stefansson S (1999) Effects of carbon dioxide on Atlantic salmon (Salmo salar L.) smolts at constant pH bicarbonate rich freshwater. Aquaculture 178:171–187

    Article  Google Scholar 

  • Fivelstad S, Olsen AB, Asgard T, Baeverfjord G, Rasmussen T, Vindheim T, Stefansson S (2003) Long-term sublethal effects of carbon dioxide on Atlantic salmon smolts (Salmo salar L.): ion regulation, haematology, element composition, nephrocalcinosis and growth parameters. Aquaculture 215:301–319

    Article  CAS  Google Scholar 

  • Florek M, Fornal E, Gomez-Romero P, Zieba E, Paszkowicz W, Lekki J, Nowak J, Kuczumow A (2009) Complementary microstructural and chemical analyses of Sepia officinalis endoskeleton. Mater Sci Eng C 29:1220–1226

    Article  CAS  Google Scholar 

  • Foss A, Røsnes BA, Øiestad V (2003) Graded environmental hypercapnia in juvenile spotted wolfish (Anarhichas minor Olafsen): effects on growth, food conversion efficiency and nephrocalcinosis. Aquaculture 220:607–617

    Article  Google Scholar 

  • le Goff R, Gauvrit E, Du Sel GP, Daguzan J (1998) Age group determination by analysis of the cuttlebone of the cuttlefish Sepia officinalis. J Moll Stud 64:183–193

    Article  Google Scholar 

  • Gutowska MA, Pörtner HO, Melzner F (2008) Growth and calcification in the cephalopod Sepia officinalis under elevated seawater pCO2. Mar Ecol Prog Ser 373:303–309

    Article  CAS  Google Scholar 

  • Gutowska MA, Melzner F, Langenbuch M, Bock C, Claireaux G, Pörtner HO (2010) Acid-base regulatory ability of the cephalopod (Sepia officinalis) in response to environmental hypercapnia. J Comp Physiol B 180:323–335

    Article  CAS  Google Scholar 

  • Hall KC, Fowler AJ, Geddes MC (2007) Evidence for multiple year classes of the giant Australian cuttlefish Sepia apama in northern Spencer Gulf, South Australia. Rev Fish Biol Fish 17:367–384

    Article  Google Scholar 

  • Hare PE, Abelson PH (1965) Amino acid composition of some calcified proteins. Carnegie Instn Wash Yb 64:223–232

    CAS  Google Scholar 

  • Hayashi M, Kita J, Ishimatsu A (2004) Acid-base responses to lethal aquatic hypercapnia in three marine fishes. Mar Biol 144:153–160

    Article  CAS  Google Scholar 

  • Hosfeld CD, Engevik A, Mollan T, Lunde TM, Waagbo R, Olsen AB, Breck O, Stefansson S, Fivelstad S (2008) Long-term separate and combined effects of environmental hypercapnia and hyperoxia in Atlantic salmon (Salmo salar L.) smolts. Aquaculture 280:146–153

    Article  Google Scholar 

  • Larsen BK, Pörtner HO, Jensen FB (1997) Extra- and intracellular acid-bases balance and ionic regulation in cod (Gadus morhua) during combined and isolated exposures to hypercapnia and copper. Mar Biol 128:337–346

    Article  CAS  Google Scholar 

  • Lenfant C, Aucutt C (1966) Measurement of blood gases by gas chromatography. Resp Physiol 1:398–407

    Article  CAS  Google Scholar 

  • Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations. ORNL/CDIAC-105, carbon dioxide information analysis center, Oak Ridge National Laboratory, Oak Ridge, TN. Available at: http://cdiac.esd.ornl.gov/oceans/co2rprt.html

  • Lindinger MI, Lauren DJ, McDonald DG (1984) Acid–base balance in the sea mussel, Mytilus edulis. III. Effects of environmental hypercapnia on intra- and extracellular acid–base balance. Mar Biol Let 5:371–381

    CAS  Google Scholar 

  • Marie B, Marin F, Marie A, Bedouet L, Dubost L, Alcaraz G, Milet C, Luquet G (2009) Evolution of nacre: biochemistry and proteomics of the shell organic matrix of the cephalopod Nautilus macromphalus. Chembiochem 10:1495–1506

    Article  CAS  Google Scholar 

  • Marin F, Luquet G (2004) Molluscan shell proteins. Comptes Rendus Palevol. 3:469–490

    Article  Google Scholar 

  • Marin F, Corstjens P, de Gaulejac B, Vrind-DE Jong ED, Westbroek P (2000) Muscins and molluscan calcification–Molecular characterization of mucoperlin, a novel mucin-like protein from the nacreous shell layer of the fan mussel Pinna nobilis (Bivalvia, Pteriomorphia). J Biol Chem 275:20667–20675

    Article  CAS  Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

    Article  CAS  Google Scholar 

  • Melzner F, Göbel S, Langenbuch M, Gutowska MA, Pörtner HO, Lucassen M (2009a) Effects of long-term hypercapnic exposure on cod (Gadus morhua) swimming performance, metabolism and gill Na+/K+ -ATPase. Aquat Tox 92:30–37

    Article  CAS  Google Scholar 

  • Melzner F, Gutowska MA, Langenbuch M, Dupont S, Lucassen M, Thorndyke M, Bleich M, Pörtner HO (2009b) Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6:2313–2331

  • Michaelidis B, Ouzounis C, Paleras A, Pörtner HO (2005) Effects of long-term moderate hypercapnia on acid-base balance and growth in marine mussel Mytilus galloprovincialis. Mar Ecol Prog Ser 293:109–118

    Article  Google Scholar 

  • Michaelidis B, Spring A, Pörtner HO (2007) Effects of long-term acclimation to environmental hypercapnia on extracellular acid-base status and metabolic capacity in Mediterranean fish Sparus aurata. Mar Biol 150:1417–1429

    Article  Google Scholar 

  • Neige P, Boletzky SV (1997) Morphometrics of the shell of three Sepia species (Mollusca: Cephalopoda): intra- and interspecific variation. Zool Beitr N F 2:137–156

    Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A et al (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  CAS  Google Scholar 

  • Pane EF, Barry JP (2007) Extracellular acid-base regulation during short-term hypercapnia is effective in a shallow-water crab, but ineffective in a deep-sea crab. Mar Ecol Prog Ser 334:1–9

    Article  CAS  Google Scholar 

  • Pörtner HO (2008) Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar Ecol Prog Ser 373:203–217

    Article  Google Scholar 

  • Pörtner HO, Boutilier RG, Tang Y, Toews DP (1990) Determination of intracellular pH and pCO2 after metabolic inhibition by fluoride and nitrilotriacetic acid. Resp Physiol 81:255–274

    Article  Google Scholar 

  • Pörtner HO, Langenbuch M, Reipschläger A (2004) Biological impact of elevated ocean CO2 concentration: lessons from animal physiology and Earth history. J Oceanogr 60:705–718

    Article  Google Scholar 

  • Ries JB, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:1131–1134

    Article  CAS  Google Scholar 

  • Seibel BA, Walsh PJ (2003) Biological impacts of deep-sea carbon dioxide injection inferred from indices of physiological performance. J Exp Biol 206:641–650

    Article  CAS  Google Scholar 

  • Sherrard K (2000) Cuttlebone morphology limits habitat depth in eleven species of Sepia (Cephalopoda: Sepiidae). Biol Bull 198:404–414

    Article  CAS  Google Scholar 

  • Shirayama Y, Thornton H (2005) Effects of increased atmospheric CO2 on shallow water marine benthos. J Geo Res 110:C09S08

    Google Scholar 

  • Spicer JI, Raffo A, Widdicombe S (2007) Influence of CO2 related seawater acidification on extracellular acid-base balance in the velvet swimming crab Necora puber. Mar Biol 151:1117–1125

    Article  Google Scholar 

  • Toews DP, Holeton GF, Heisler N (1983) Regulation of the acid-base status during environmental hypercapnia in the marine teleost fish Conger conger. J Exp Biol 107:9–20

    CAS  Google Scholar 

  • Tompsett DH (1939) Sepia. L.M.B.C. Memoirs on typical british marine plants and animals. University Press of Liverpool, Liverpool

    Google Scholar 

  • Truchot JP (1984) Water carbonate alkalinity as a determinant of hemolymph acid-base balance in the shore crab, Carcinus maenas, a study at two different ambient pCO2 and pO2 levels. J Comp Physiol 154:601–606

    CAS  Google Scholar 

  • Vandeputte M, Dupont-Nivet M, Haffray P, Chavanne H, Cenadelli S, Parati K, Vidal MO, Bergnet A, Chatain B (2009) Response to domestication and selection for growth in the European sea bass (Dicentrarchus labrax) in separate and mixed tanks. Aquaculture 286:20–27

    Article  Google Scholar 

  • Ward P, Boletzky SV (1984) Shell implosion depth and implosion morphologies in three species of Sepia (Cephalopoda) from the Mediterranean Sea. J Mar Biol Assoc UK 64:955–966

    Article  Google Scholar 

  • Webber DM, Aitken J, O’Dor RK (2000) Costs of vertical locomotion and vertical dynamics of cephalopods and fish. Physiol Biochem Zool 73:651–662

    Article  CAS  Google Scholar 

  • Weiner S (1979) Aspartic acid-rich proteins major components of the soluble organic matrix of mollusk shells. Calc Tiss Int 29:163–167

    Article  CAS  Google Scholar 

  • Weiner S, Traub W (1984) Macromolecules in mollusc shells and their functions in biomineralization. Phil Trans R Soc Lond B 304:425–434

    Article  CAS  Google Scholar 

  • Wendling J (1987) On the buoyancy system of Sepia officinalis L. (Cephalopoda). Dissertation, University of Basel, Switzerland

  • Westermann B, Schmidtberg H, Beuerlein K (2005) Functional morphology of the mantle of Nautilus pompilius (Mollusca, Cephalopoda). J Morph 264:277–285

    Article  Google Scholar 

  • Wiedmann J, Boletzky S (1982) Wachstum und Differenzierung des Schulps von Sepia officinialis unter künstlichen Aufzuchtbedingungen–Grenzen der Anwendung im palökologischen Modell. N J Geol Pal Abh 164:118–133

    Google Scholar 

  • Wilt FH, Killian CE, Livingston BT (2003) Development of calcareous skeletal elements in invertebrates. Differentiation 71:237–250

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank M. P. and R. Chichery, Université de Caen, France, and A. Wittmann for providing S. officinalis eggs. We also extend our thanks to P. Santelices for help with the growth trial. U. Schuldt is gratefully acknowledged for her expert help with the SE micrographs. This study was supported by DAAD (MAG), the AWI ‘MARCOPOLI’ Program (MAG, HOP, FM) and the DFG Excellence Cluster ‘Future Ocean’ (FM). This work is a contribution to the German Ministry of Education and Research (BMBF) funded project “Biological Impacts of Ocean ACIDification” (BIOACID) Subproject 3.1.3 and the “European Project on Ocean Acidification” (EPOCA) that received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no 211384.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena A. Gutowska.

Additional information

Communicated by J. P. Grassle.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 681 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gutowska, M.A., Melzner, F., Pörtner, H.O. et al. Cuttlebone calcification increases during exposure to elevated seawater pCO2 in the cephalopod Sepia officinalis . Mar Biol 157, 1653–1663 (2010). https://doi.org/10.1007/s00227-010-1438-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-010-1438-0

Keywords

  • Organic Matrix
  • Ocean Acidification
  • Lamellar Spacing
  • Mantle Length
  • Elevated pCO2