Marine Biology

, Volume 157, Issue 7, pp 1417–1431 | Cite as

Are there true cosmopolitan sipunculan worms? A genetic variation study within Phascolosoma perlucens (Sipuncula, Phascolosomatidae)

Original Paper

Abstract

Phascolosoma perlucens is one of the most common intertidal sipunculan species and has been considered a circumtropical cosmopolitan taxon due to the presence of a long-lived larva. To verify whether P. perlucens is a true cosmopolitan species or a complex of cryptic forms, we examined the population structure and demographics of 56 putative P. perlucens individuals from 13 localities throughout the tropics. Analysis of two mitochondrial markers, cytochrome c oxidase subunit I and 16S rRNA, suggests high levels of genetic differentiation between distantly located populations of P. perlucens. At least four different lineages identified morphologically as P. perlucens were distinguished. These lineages are likewise supported by phylogenetic analysis of the two mitochondrial markers and by the haplotype network analysis. Our results suggest that P. perlucens is a case of overconservative taxonomy, rejecting the alleged cosmopolitanism of P. perlucens. However, cryptic speciation also exists in some areas, including a possible case of geminate species across the Isthmus of Panama.

Supplementary material

227_2010_1402_MOESM1_ESM.pdf (1008 kb)
Supplementary material 1 (PDF 1008 kb)

References

  1. Addison JA, Hart MW (2005) Colonization, dispersal, and hybridization influence phylogeography of North Atlantic sea urchins (Strongylocentrotus droebachiensis). Evolution 59:532–543Google Scholar
  2. Álvarez-Padilla F, Dimitrov D, Giribet G, Hormiga G (2009) Phylogenetic relationships of the spider family Tetragnathidae (Araneae, Araneoidea) based on morphological and DNA sequence data. Cladistics 25:109–146CrossRefGoogle Scholar
  3. Aron S, Solé-Cava AM (1991) Genetic evaluation of the taxonomic status of 2 varieties of the cosmopolitan ascidian Botryllus niger (Ascidiacea, Botryllidae). Biochem Syst Ecol 19:271–276CrossRefGoogle Scholar
  4. Augener H (1903) Beitrage zur Kenntnis der Gephyreen nach Untersuchung der im Gottinger zoologischen Museum befindlichen Sipunculiden und Echiuriden. Arch Natarges 69:297–371Google Scholar
  5. Baird WB (1868) Monograph of the species of worms belonging to the subclass Gephyrea; with a notice of such species as are contained in the collection of the British Museum. Proc Zool Soc Lond 1868:76–114Google Scholar
  6. Baker JM, Funch P, Giribet G (2007) Cryptic speciation in the recently discovered American cycliophoran Symbion americanus; genetic structure and population expansion. Mar Biol 151:2183–2193CrossRefGoogle Scholar
  7. Bleidorn C, Kruse I, Albrecht S, Bartolomaeus T (2006) Mitochondrial sequence data expose the putative cosmopolitan polychaete Scoloplos armiger (Annelida, Orbiniidae) as a species complex. BMC Evol Biol 6:47CrossRefGoogle Scholar
  8. Boury-Esnault N, Klautau M, Bezac C, Wulff J, Solé-Cava AM (1999) Comparative study of putative conspecific sponge populations from both sides of the Isthmus of Panama. J Mar Biol Assoc UK 79:39–50CrossRefGoogle Scholar
  9. Bucklin A, Kocher TD (1996) Source regions for recruitment of Calanus finmarchicus to Georges Bank: Evidence from molecular population genetic analysis of mtDNA. Deep-Sea Res Part II 43:1665–1681CrossRefGoogle Scholar
  10. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659CrossRefGoogle Scholar
  11. Crandall KA (1996) Multiple interspecies transmissions of human and simian T-cell leukemia/lymphoma virus type I sequences. Mol Biol Evol 13:115–130CrossRefGoogle Scholar
  12. Cutler EB (1965) Sipunculids of Madagascar. Extrait des cahiers ORSTOM-Oceanographie 3:51–63Google Scholar
  13. Cutler EB (1994) The sipuncula: their systematics, biology and evolution. Cornell University Press, Ithaca, N.Y. 453 pGoogle Scholar
  14. Cutler EB, Cutler NJ (1979) Madagascar and Indian Ocean Sipuncula. Bull Mus Natl Hist Nat, Paris 4e:941–990Google Scholar
  15. Cutler EB, Cutler NJ (1990) A revision of the subgenus Phascolosoma (Sipuncula: Phascolosoma). Proc Biol Soc Wash 103:691–730Google Scholar
  16. Cutler EB, Kirsteuer E (1968) Additional notes on some sipuncula from Madagascar. Results Australian Indo-West Pacific expedition, 1959–60. Part 12. Zool Anz 180:352–356Google Scholar
  17. Cutler EB, Cutler NJ, Nishikawa T (1984) The sipuncula of Japan: their systematics and distribution. Publ Seto Mar Biol Lab 29:249–322Google Scholar
  18. De Laet JE (2005) Parsimony and the problem of inapplicables in sequence data. In: Albert VA (ed) Parsimony, phylogeny and genomics. Oxford University Press, Oxford, pp 81–116Google Scholar
  19. Du X, Chen Z, Deng Y, Wang Q, Huang R (2008) Genetic diversity and population structure of the peanut worm (Sipunculus nudus) in Southern China as inferred from mitochondrial 16S rRNA sequences. Isr J Aquacul-Bamid 60:237–242Google Scholar
  20. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:1–19CrossRefGoogle Scholar
  21. Edmonds SJ (1980) A revision of the systematics of Australian sipunculans (sipuncula). Rec S Aust Mus 18:1–74Google Scholar
  22. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50Google Scholar
  23. Farris JS (1997) The future of phylogeny reconstruction. Zool Scr 26:303–311CrossRefGoogle Scholar
  24. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  25. Fischer W (1922) Westindische Gephyreen. Zool Anz 55:10–18Google Scholar
  26. Fisher WK (1952) The sipunculid worms of California and Baja California. Proc US Nat Mus 102:371–450CrossRefGoogle Scholar
  27. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek RC (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mar Biol Biothechnol 3:294–299Google Scholar
  28. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925Google Scholar
  29. Funk DJ, Omland KE (2003) Species-level paraphyly and polyphyly: Frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu Rev Ecol Evol Syst 34:397–423CrossRefGoogle Scholar
  30. Goloboff PA (1999) Analyzing large data sets in reasonable times: Solutions for composite optima. Cladistics 15:415–428CrossRefGoogle Scholar
  31. Huber BA, Astrin JJ (2009) Increased sampling blurs morphological and molecular species limits: revision of the Hispaniolan endemic spider genus Tainonia (Araneae: Pholcidae). Invertebr Syst 23:281–300CrossRefGoogle Scholar
  32. Jolly MT, Jollivet D, Gentil F, Thiebaut E, Viard F (2005) Sharp genetic break between Atlantic and English Channel populations of the polychaete Pectinaria koreni, along the North coast of France. Heredity 94:23–32CrossRefGoogle Scholar
  33. Klautau M, Russo CAM, Lazoski C, Boury-Esnault N, Thorpe JP, Solé-Cava AM (1999) Does cosmopolitanism result from overconservative systematics? A case study using the marine sponge Chondrilla nucula. Evolution 53:1414–1422CrossRefGoogle Scholar
  34. Knowlton N (1993) Sibling species in the sea. Annu Rev Ecol Syst 24:189–216CrossRefGoogle Scholar
  35. Knowlton N (2000) Molecular genetic analyses of species boundaries in the sea. Hydrobiologia 420:73–90CrossRefGoogle Scholar
  36. Lanchester WF (1905) On the sipunculids and echiurids collected during the “Skeat” expedition to the Malay Peninsula. Proc Zool Soc Lond 1:35–41Google Scholar
  37. Lessios HA, Kessing BD, Pearse JS (2001) Population structure and speciation in tropical seas: Global phylogeography of the sea urchin Diadema. Evolution 55:955–975CrossRefGoogle Scholar
  38. Marko PB (2002) Fossil calibration of molecular clocks and the divergence times of geminate species pairs separated by the Isthmus of Panama. Mol Biol Evol 19:2005–2021CrossRefGoogle Scholar
  39. Mayr E, Ashlock PD (1991) Principles of systematic zoology. Mcgraw-Hill, New York, p 428Google Scholar
  40. McFadden CS, Grosberg RK, Cameron BB, Karlton DP, Secord D (1997) Genetic relationships within and between clonal and solitary forms of the sea anemone Anthopleura elegantissima revisited: Evidence for the existence of two species. Mar Biol 128:127–139CrossRefGoogle Scholar
  41. McGovern TM, Hellberg ME (2003) Cryptic species, cryptic endosymbionts, and geographical variation in chemical defences in the bryozoan Bugula neritina. Mol Ecol 12:1207–1215CrossRefGoogle Scholar
  42. Monro CA (1931) Polychaeta, Oligochaeta, Echiuroidea and Sipunculoidea. Sci Rep Barrier Reef Exped 4:1037Google Scholar
  43. Monteiro FA, Solé-Cava AM, Thorpe JP (1997) Extensive genetic divergence between populations of the common intertidal sea anemone Actinia equina from Britain, the Mediterranean and the Cape Verde Islands. Mar Biol 129:425–433CrossRefGoogle Scholar
  44. Murina VV (1964) Report on the sipunculid worms from the coast of South Chinese Sea. Tr Inst Okeanol Akad Nauk SSSR 69:254–270Google Scholar
  45. Murina VV (1967) On the sipunculid fauna of the littoral of Cuba. Zool Zh 46:35–47Google Scholar
  46. Pfenninger M, Posada D (2002) Phylogeographic history of the land snail Candidula unifasciata (Helicellinae, Stylommatophora): Fragmentation, corridor migration, and secondary contact. Evolution 56:1776–1788Google Scholar
  47. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818CrossRefGoogle Scholar
  48. Ramírez-Soriano A, Ramos-Onsins SE, Rozas J, Calafell F, Navarro A (2008) Statistical power analysis of neutrality tests under demographic expansions, contractions and bottlenecks with recombination. Genetics 179:555–567CrossRefGoogle Scholar
  49. Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19:2092–2100CrossRefGoogle Scholar
  50. Rice ME (1975) Survey of the Sipuncula of the coral and beach rock communities of the Caribbean Sea. In: Rice ME, Todorovic M (eds) Proceedings of the International Symposium of Sipuncula and Echiura. Naucno Delo Press, Belgrade, pp 35–49Google Scholar
  51. Rice ME (1981) Larvae adrift: patterns and problems in life histories of sipunculans. Am Zool 21:605–619Google Scholar
  52. Rice ME, MacIntyre IG (1979) Distribution of Sipuncula in the coral reef community, Carrie Bow Cay, Belize. Smithson Contrib Mar Sci 12:311–320Google Scholar
  53. Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2009) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497CrossRefGoogle Scholar
  54. Rubinoff D, Holland BS (2005) Between two extremes: Mitochondrial DNA is neither the panacea nor the nemesis of phylogenetic and taxonomic inference. Syst Biol 54:952–961CrossRefGoogle Scholar
  55. Scheltema RS (1975) The frequency of long-distance larval dispersal and the rate of genes of gene-flow between widely separated populations of sipunculans. In: Rice ME, Todorovic M (eds) Proceedings of the International Symposium on the Biology of the Sipuncula and Echiura. Kotor, Yugoslavia, pp 199–210Google Scholar
  56. Scheltema RS (1988) Initial evidence for the transport of teleplanic larvae of benthic invertebrates across the East Pacific Barrier. Biol Bull 174:145–152CrossRefGoogle Scholar
  57. Scheltema RS, Hall JR (1975) The dispersal of pelahosphaera larvae by ocean currents and the geographical distribution of sipunculans. In: Rice EM, Tororovic M (eds) Proceedingns of the International Symposium on the Biology of the Sipuncula and Echiura. Kotor, Yugoslavia, pp 103–115Google Scholar
  58. Schulze A, Cutler EB, Giribet G (2005) Reconstructing the phylogeny of the Sipuncula. Hydrobiologia 535(536):277–296CrossRefGoogle Scholar
  59. Schulze A, Cutler EB, Giribet G (2007) Phylogeny of sipunculan worms: A combined analysis of four gene regions and morphology. Mol Phylogenet Evol 42:171–192CrossRefGoogle Scholar
  60. Schwaninger HR (2008) Global mitochondrial DNA phylogeography and biogeographic history of the antitropically and longitudinally disjunct marine bryozoan Membranipora membranacea L. (Cheilostomata): Another cryptic marine sibling species complex? Mol Phylogenet Evol 49:893–908CrossRefGoogle Scholar
  61. Selenka E, de Man JG, Bulow C (1883) Die Sipunculiden, eine systematische Monographie. Semper Reisen in Archipel Phillippinen 2(4):1–131Google Scholar
  62. Shipley AE (1898) Report on the Gephyrean worms collected by Mr. J. Stanley Gardiner at Rotuma and Funafuti. J Zool:468 − 473Google Scholar
  63. Shulman MJ, Bermingham E (1995) Early life histories, ocean currents, and the population genetics of Caribbean reef fishes. Evolution 49:897–910CrossRefGoogle Scholar
  64. Sluiter CP (1891) Die Evertebraten aus der Sammlung des Koniglichen naturwissenschaftlichen Vereins in Nederlandisch-Indien in Batavia. Naturk Tijdschr Nederl Ind 50:102–123Google Scholar
  65. Smith SA, Dunn CW (2008) Phyutility: a phyloinformatics tool for trees, alignments and molecular data. Bioinformatics 24:715–716CrossRefGoogle Scholar
  66. Solé-Cava AM, Thorpe JP (1986) Genetic differentiation between morphotypes of the marine sponge Suberites ficus (Demospongiae, Hadromerida). Mar Biol 93:247–253CrossRefGoogle Scholar
  67. Stamatakis A (2006) RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690CrossRefGoogle Scholar
  68. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML Web Servers. Syst Biol 57:758–771CrossRefGoogle Scholar
  69. Staton J, Rice ME (1999) Genetic differentiation despite teleplanic larval dispersal: Allozyme variation in sipunculans of the Apionsoma misakianum species complex. Bull Mar Sci 65:467–480Google Scholar
  70. Stephen AC (1960) Echiuroidea and Sipunculoidea from Senegal, West Africa. Bulletin de l’Institut Francais d’Afrique Noire 22a:512–520Google Scholar
  71. Stephen AC, Edmonds SJ (1972) The phyla Sipuncula and Echiura. Trustees British Mus (Nat Hist), London 528 pGoogle Scholar
  72. Tarjuelo I, Posada D, Crandall KA, Pascual M, Turon X (2004) Phylogeography and speciation of colour morphs in the colonial ascidian Pseudodistoma crucigaster. Mol Ecol 13:3125–3136CrossRefGoogle Scholar
  73. Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132:619–633Google Scholar
  74. Ten Broeke A (1925) Westindische Sipunculiden und Echuiriden. Bijdr Dierkd 24:81–96Google Scholar
  75. Terranova MS, Lo Brutto S, Arculeo M, Mitton JB (2007) A mitochondrial phylogeography of Brachidontes variabilis (Bivalvia : Mytilidae) reveals three cryptic species. J Zool Syst Evol Res 45:289–298CrossRefGoogle Scholar
  76. Thornhill DJ, Mahon AR, Norenburg JL, Halanych KM (2008) Open-ocean barriers to dispersal: a test case with the Antarctic Polar Front and the ribbon worm Parborlasia corrugatus (Nemertea: Lineidae). Mol Ecol 17:5104–5117CrossRefGoogle Scholar
  77. Thorpe JP, Solé-Cava AM (1994) The use of allozyme electrophoresis in invertebrate systematics. Zool Scr 23:3–18CrossRefGoogle Scholar
  78. Uthicke S, O’Hara TD, Byrne M (2004) Species composition and molecular phylogeny of the Indo-Pacific teatfish (Echinodermata : Holothuroidea) beche-de-mer fishery. Mar Freshwater Res 55:837–848CrossRefGoogle Scholar
  79. Varón A, Sy Vinh L, Wheeler WC (2009) POY version 4: phylogenetic analysis using dynamic homologies. Cladistics. doi:10.1111/j.1096-0031.2009.00282.x Google Scholar
  80. Warnke K, Soller R, Blohm D, Saint-Paul U (2004) A new look at geographic and phylogenetic relationships within the species group surrounding Octopus vulgaris (Mollusca, Cephalopoda): indications of very wide distribution from mitochondrial DNA sequences. J Zool Syst Evol Res 42:306–312CrossRefGoogle Scholar
  81. Waters JM, Roy MS (2004) Out of Africa: The slow train to Australasia. Syst Biol 53:18–24CrossRefGoogle Scholar
  82. Westheide W, Schmidt H (2003) Cosmopolitan versus cryptic meiofaunal polychaete species: an approach to a molecular taxonomy. Helgol Mar Res 57:1–6Google Scholar
  83. Wheeler W, Aagesen L, Arango CP, Faivovich J, Grant T, D’Haese C, Janies D, Smith WL, Varon A, Giribet G (2006) Dynamic homology and phylogenetic systematics: a unified approach using POY. American Museum of Natural History, 365 ppGoogle Scholar
  84. Wiens JJ (1999) Polymorphism in systematics and comparative biology. Annu Rev Ecol Syst 30:327–362CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Museum of Comparative Zoology, Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUSA

Personalised recommendations