Skip to main content
Log in

Diving costs and benefits during post-breeding movements of the Mediterranean shag in the North Adriatic Sea

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

From the 1980s, Mediterranean shags Phalacrocorax aristotelis desmarestii have become regular summer visitors in the Gulf of Trieste (N-E Italy), as post-breeding movements from Croatian breeding colonies. To characterize such a recent habit and to explore diving optimality models, we investigate foraging strategies and diving patterns at different depths, during breeding and post-breeding seasons. Behavioural data were cross-checked with the species’ diet. Shags foraged on and close to the sea bed, with a prevalent anticipatory breathing strategy. In the Gulf of Trieste, the shallow depths and low mobility of prey allowed shags to use just the oxygen of the respiratory tract, reducing the physiological stress for diving. In Croatia, dive costs increased with depth and prey mobility, resulting in a higher oxygen expenditure that involved also respiratory stores. Such ecological and physiological aspects characterize the Gulf of Trieste as an optimal area for feeding and restoring from the costs of breeding season incurred in Croatia and could be the basis of these post-breeding movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguilar JS, Fernandez G (2002) Species action plan for the Mediterranean Shag Phalacrocorax aristotelis desmarestii. Convention on the conservation of European wildlife and natural habitats. 22° Meeting, Strasbourg 2–5 Dec 2002, Birdlife International

  • Bost CA, Le Maho Y (1993) Seabirds as bio-indicators of changing marine ecosystems: new perspectives. Acta Oecolog 14:463–470

    Google Scholar 

  • Bouskila A, Blumstein DT (1992) Rules of thumb for predation hazard assessment: predictions from a dynamic model. Am Nat 139:161–176

    Article  Google Scholar 

  • Cairns DK (1987) Seabirds as indicators of marine food supplies. Biol Oceanogr 5:261–271

    Google Scholar 

  • Carbone C, Houston AI (1996) The optimal allocation of time over dive cycle: an approach based on aerobic and anaerobic respiration. Anim Behav 51:1247–1255

    Article  Google Scholar 

  • Carss DN, The Diet Assessment and Food Intake Working Group (1997) Techniques for assessing Cormorant diet and food intake: towards a consensus view. Suppl Ric Biol Selvaggina 26:197–230

    Google Scholar 

  • Chappell MA, Shoemaker VH, Janes DN, Bucher TH, Maloney SK (1993) Diving behaviour during foraging in breeding Adélie penguins. Ecology 74:2450–2461

    Article  Google Scholar 

  • Cook TR, Lescroël A, Tremblay Y, Bost C-A (2008) To breathe or not to breathe? Optimal breathing, aerobic dive limit and oxygen stores in deep-diving blue-eyed shags. Anim Behav 76:565–576

    Article  Google Scholar 

  • Cooper J (1986) Diving patterns of Cormorants (Phalacrocoracidae). Ibis 128:562–570

    Article  Google Scholar 

  • Croxall JP, Briggs DR, Kato A, Naito Y, Watanuki Y, Williams TD (1993) Diving pattern and performance in the macaroni penguin Eudyptes chrysolophus. J Zool 230:31–47

    Article  Google Scholar 

  • Dewar JM (1924) The bird as a diver. Whiterby, London

    Google Scholar 

  • Elliott KH, Davoren GK, Gaston AJ (2008a) Time allocation by a deep-diving bird reflects prey type and energy gain. Anim Behav 75:1301–1310

    Article  Google Scholar 

  • Elliott KH, Woo K, Gaston AJ, Benvenuti S, Dall’Antonia L, Davoren GK (2008b) Seabird foraging behaviour indicates prey type. Mar Ecol Prog Ser 354:289–303

    Article  Google Scholar 

  • Fedak MA, Pullen MP, Kanwisher J (1988) Circulatory responses of seals to periodic breathing: heart rate and breathing during exercise and diving in the laboratory and open sea. Can J Zool 66:53–60

    Article  Google Scholar 

  • Green JA, Halsey L, Butler PJ (2005) To what extent is the foraging behaviour of aquatic birds constrained by their physiology? Physiol Biochem Zool 78:766–781

    Article  PubMed  Google Scholar 

  • Grémillet D, Argentin G, Schulte B, Culik BM (1998) Flexible foraging techniques in breeding cormorants Phalacrocorax carbo and shags Phalacrocorax aristotelis: benthic or pelagic feeding? Ibis 140:113–119

    Article  Google Scholar 

  • Guyot I (1988) Relationships between shag feeding areas and human fishing activities in Corsica (Mediterranean Sea). In: Tasker ML (ed) Seabirds food and feeding ecology. Proc. 3rd Intern. Conf. Seabird Group, pp 22–23

  • Guyot I (1993) Breeding distribution and number of Shag Phalacrocorax aristotelis desmarestii in the Mediterranean. In: Aguilar JS, Monabailliu X, Paterson AM (eds) Estatus y Conservación de Aves Marinas. Actas del II Simposio MEDMARAVIS, Madrid

  • Halsey LG, Butler PJ (2006) Optimal diving behaviour and respiratory gas exchange in birds. Respir Physiol Neurobiol 154:268–283

    Article  CAS  PubMed  Google Scholar 

  • Heithaus MR, Frid A (2003) Optimal diving under the risk of predation. J Theor Biol 223:79–92

    Article  PubMed  Google Scholar 

  • Houston AI (2000) Nonmonotonic dive to surface ratios: comments on Walton et al (1998). Anim Behav 59:F13–F15

    Google Scholar 

  • Houston AI, Carbone C (1992) The optimal allocation of time during the dive cycle. Behav Ecol 3:233–262

    Article  Google Scholar 

  • Hunt GL Jr (1991) The pelagic distribution of marine birds in a heterogeneous environment. Polar Res 8:43–54

    Article  Google Scholar 

  • Jodice PGR, Collopy MW (1999) Diving and foraging patterns of Marbled murrelets Brachyramphus marmoratus: testing predictions from optimal breathing models. Can J Zool 77:1409–1418

    Article  Google Scholar 

  • Keller T (1993) Untersuchungen zur Nahrungsokologie von in Bayern überwinternden Kormoranen Phalacrocorax carbo sinensis. Orn Verh 25:81–128

    Google Scholar 

  • Kooyman GL, Ponganis PJ (1998) The physiological basis of diving to depth: birds and mammals. Ann Rev Physiol 60:19–32

    Article  CAS  Google Scholar 

  • Kooyman GL, Wahrenbrock EA, Castellini MA, Davis RW, Sinnett EE (1980) Aerobic and anaerobic metabolism during voluntary diving in Weddell seals: evidence of preferred pathways from blood chemistry and behaviour. J Comp Physiol 138:335–346

    CAS  Google Scholar 

  • Kramer DL (1988) Behavioural ecology of air breathing by aquatic mammals. Can J Zool 66:89–94

    Article  Google Scholar 

  • Lea SEG, Daley C, Boddington PJC, Morison V (1996) Diving patterns in shags and cormorants (Phalacrocorax): test of an optimal breathing model. Ibis 138:391–398

    Article  Google Scholar 

  • Mannini P, Massa F, Milone N (2005) Adriatic Sea fisheries: outline of some main facts. In: Cataudella S, Massa F, Crosetti D (eds) Interactions between aquaculture and capture fisheries: a methodological perspective. Gen Fish Comm Mediterr 78, FAO 2005, Rome, 229 pp

  • Monaghan P, Walton P, Wanless S, Uttley JD, Burns MD (1994) Effects of prey abundance on the foraging behaviour, diving efficiency and time allocation of breeding guillemots Uria aalge. Ibis 136:214–222

    Article  Google Scholar 

  • Mori Y (1998) The optimal patch use in divers: optimal time budget and the number of dive cycles during bout. J Theor Biol 190:187–199

    Article  Google Scholar 

  • Mori Y, Takahashi A, Mehlum F, Watanuki Y (2002) An application of optimal diving models to diving behaviour of Brünnich’s guillemots. Anim Behav 64:739–745

    Article  Google Scholar 

  • Nagy KA, Kooyman GL, Ponganis PJ (2001) Energetic cost of foraging in free-diving emperor penguins. Physiol Biochem Zool 74:541–547

    Article  CAS  PubMed  Google Scholar 

  • Nolet BA, Wansink DEH, Kruuk H (1993) Diving of otters Lutra lutra in a marine habitat: use of depths by a single prey loader. J Anim Ecol 62(1):22–32

    Article  Google Scholar 

  • Orel G, Zamboni R (2004) Proposte per un piano pluriennale di gestione della fascia costiera del Golfo di Trieste. II Edizione riveduta ed ampliata. ARIES—Progetto Pesca, SFOP 2000–2003, pp 272

  • Parkes R, Halsey LG, Woakes AJ, Holder RL, Butler PJ (2002) Oxygen uptake during post dive recovery in a diving birds Aythya fuligula: implication for optimal foraging models. J Exp Biol 205:3945–3954

    PubMed  Google Scholar 

  • Piccinetti C (1970) Considerazioni sugli spostamenti delle alici Engraulis encrasicolus nell’alto e medio Adriatico. Boll Pesca Pisc Idr 25(1):145–157

    Google Scholar 

  • Ponganis PJ, Kooyman GL, Starke LN, Kooyman CA, Kooyman TG (1997) Post-dive blood lactate concentrations in Emperor penguins Aptenodytes forsteri. J Exp Biol 200:1623–1626

    CAS  PubMed  Google Scholar 

  • Prestamburgo M, Cosmina M, Gallenti G, Mauro L, Girardini C (2005) Progetto ADRI.FISH. Realizzazione della rete di monitoraggio dati “L’economia della pesca entro le tre miglia nell’area Adri.Fish”. PIC Interreg IIIB Cadses. Dipartimento di Economia e Tecnica aziendale. Università degli Studi di Trieste, 30 giugno 2005, 38 pp

  • Privileggi N (2003) Great cormorants Phalacrocorax carbo sinensis wintering in Friuli Venezia Giulia, Northern Adriatic: specific and quantitative diet composition. Vogelwelt 124(Suppl):237–243

    Google Scholar 

  • Rayner MJ, Hauber ME, Clout MN, Seldon DS, Van Dijken S, Bury S, Phillips RA (2008) Foraging ecology of the Cook’s petrel Pterodroma cookii during the austral breeding season: a comparison of its two populations. Mar Ecol Prog Ser 370:271–284

    Article  Google Scholar 

  • Sato K, Naito Y, Kato A, Niizuma Y, Watanuki Y, Charassin JB, Bost C-A, Handrich Y, Le Maho Y (2002) Buoyancy and maximal diving depth in penguins: do they control inhaling air volume? J Exp Biol 205:1189–1197

    PubMed  Google Scholar 

  • Skrivanic A, Zavodnik D (1973) Migration of the sardine Sardina pilchardus in relation to hydrographical conditions of the Adriatic Sea. Neth J Sea Res 7:7–18

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1969) Biometry. W.H. Freeman and Co., San Francisco

    Google Scholar 

  • Sparling CE, Georges J-Y, Gallon SL, Fedak M, Thompson D (2007) How long a dive last? Foraging decisions by breath-hold divers in a patchy environment: test of a simple model. Anim Behav 74:207–218

    Article  Google Scholar 

  • Stephenson R, Butler PJ, Woakes AJ (1986) Diving behaviour and heart rate in Tufted ducks Aythya fuligula. J Exp Biol 126:341–359

    CAS  PubMed  Google Scholar 

  • Stonehouse B (1967) Feeding behaviour and diving rhythms of some New Zealand shags, Phalacrocoracidae. Ibis 109:600–605

    Article  Google Scholar 

  • Thompson D, Fedak MA (2001) How long should a dive last? A simple model of foraging decisions by breath hold divers in a patchy environment. Anim Behav 61:287–296

    Article  Google Scholar 

  • Thompson D, Hammond PS, Nicholas KS, Fedak MA (1991) Movements, diving and foraging behaviour of grey seals Halichoerus grypus. J Zool 224:223–232

    Article  Google Scholar 

  • Utmar P (1999) Marangone dal ciuffo Phalacrocorax aristotelis. In: Parodi R (ed) Gli uccelli della provincia di Gorizia. Ediz. Mus. Fr. St. Nat. vol 42

  • Uttley JD, Walton P, Monaghan P, Austin G (1994) The effects of food abundance on breeding performance and adult time budgets of guillemots Uria aalge. Ibis 136:205–213

    Article  Google Scholar 

  • Veldkamp R (1995) The use of chewing pads for estimating the consumption of cyprinids by Cormorants Phalacrocorax carbo. Ardea 83:135–138

    Google Scholar 

  • Walton P, Ruxton GD, Monaghan P (1998) Avian diving, respiratory physiology and the marginal value theorem. Anim Behav 56:165–174

    Article  PubMed  Google Scholar 

  • Wanless S, Morris JA, Harris MP (1988) Diving behaviour of guillemot Uria aalge, puffin Fratercula arctica and razorbill Alca torda as shown by radio telemetry. J Zool 216:73–81

    Article  Google Scholar 

  • Wanless S, Burger AE, Harris MP (1991) Diving depths of shags Phalacrocorax aristotelis breeding on the Isle of May. Ibis 133:37–42

    Article  Google Scholar 

  • Wanless S, Corfield T, Harris MP, Buckland ST, Morris JA (1993) Diving behaviour of the shag Phalacrocorax aristotelis (Aves: Pelecaniformes) in relation to water depth and prey size. J Zool 231:11–25

    Article  Google Scholar 

  • Wanless S, Bacon PJ, Harris MP, Webb AD, Greenstreet SPR, Webb A (1997) Modelling environmental and energetic effects on feeding performance and distribution of shag Phalacrocorax aristotelis: integrating telemetry, geographical information system, and modelling techniques. J Mar Sci 54:524–544

    Google Scholar 

  • Watanuki Y, Daunt F, Takahashi A, Newell M, Wanless S, Satom K, Miyazaki N (2008) Microhabitat use and prey capture of a bottom-feeding top predator, the European Shag, shown by camera loggers. Mar Ecol Prog Ser 356:283–293

    Article  Google Scholar 

  • Wilson RP (1992) Environmental monitoring with seabirds: do we need additional technology? S Afr J Mar Sci 12:919–926

    Google Scholar 

  • Wilson RP (2003) Penguins predict performance. Mar Ecol Prog Ser 249:305–310

    Article  Google Scholar 

  • Wilson RP, Quintana F (2004) Surface pauses in relation to dive duration in imperial cormorants: how much time for a breather? J Exp Biol 207:1789–1796

    Article  PubMed  Google Scholar 

  • Wilson RP, Simeone A, Luna-Jorquera G, Steinfurth A, Jackson S, Fahlman A (2003) Patterns of respiration in diving penguins: is the last gasp based on an inspired tactic? J Exp Biol 206:1751–1763

    Article  PubMed  Google Scholar 

  • Ydenberg RC, Clark C (1989) Aerobiosis and anaerobiosis during diving by western grebes Aechmophorus occidentalis, an optimal foraging approach. J Theor Biol 139:437–449

    Article  Google Scholar 

Download references

Acknowledgments

We thank C. Trani and A. Floreani for help in video recording and N. Privileggi for performing pellet analysis. P. Utmar, F. Roppa, N. Ventolini, M. Tofful, R. Kriscjak, C. Trani for the support in catching and ringing activity, carried out in collaboration with the Institute of Ornithology of Zagreb (Croatia): a particular thank to J. Kralj and M. Kulieri’c. Thanks also to L. Serra for statistical support. Ringing license and specific authorization were granted by the Institute for Environmental Protection and Research (Italian Law no. 157/1992), while we obtained permissions to catch and ring shags in Croatia from the Croatian Ministry of Culture, Department for Protection of Nature. At Veli Lošinj (Croatia), we thank Blue World staff, in particular N. Rako and P. Makelworth, and Karlo for bringing us to and from Oruda island. At Brijuni archipelago (Croatia), we thank the local authority of the Brijuni National Park. Finally, we are grateful to K. Kravos and S. Candotto of the Natural Reserve “Foce dell’Isonzo” (Gorizia, Italy) for the rings read. PhD scholarship was granted to B. Cimador by the University of Trieste. Finally, we would like to thank the two anonymous referees and the Associate Editor for valuable criticism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Sponza.

Additional information

Communicated by M. E. Hauber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sponza, S., Cimador, B., Cosolo, M. et al. Diving costs and benefits during post-breeding movements of the Mediterranean shag in the North Adriatic Sea. Mar Biol 157, 1203–1213 (2010). https://doi.org/10.1007/s00227-010-1400-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-010-1400-1

Keywords

Navigation