Skip to main content
Log in

Effects of seagrasses and algae of the Caulerpa family on hydrodynamics and particle-trapping rates

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The widespread decline of seagrass beds within the Mediterranean often results in the replacement of seagrasses by opportunistic green algae of the Caulerpa family. Because Caulerpa beds have a different height, stiffness and density compared to seagrasses, these changes in habitat type modify the interaction of the seafloor with hydrodynamics, influencing key processes such as sediment resuspension and particle trapping. Here, we compare the effects on hydrodynamics and particle trapping of Caulerpa taxifolia, C. racemosa, and C. prolifera with the Mediterranean seagrasses Cymodocea nodosa and Posidonia oceanica. All macrophyte canopies reduced near-bed volumetric flow rates compared to bare sediment, vertical profiles of turbulent kinetic energy revealed peak values around the top of the canopies, and maximum values of Reynolds stress increased by a factor of between 1.4 (C. nodosa) and 324.1 (P. oceanica) when vegetation was present. All canopies enhanced particle retention rates compared to bare sediment. The experimental C. prolifera canopy was the most effective at particle retention (m2 habitat); however, C. racemosa had the largest particle retention capacity per structure surface area. Hence, in terms of enhancing particle trapping and reducing hydrodynamic forces at the sediment surface, Caulerpa beds provided a similar or enhanced function compared to P.oceanica and C. nodosa. However, strong seasonality in the leaf area index of C. racemosa and C. taxifolia within the Mediterranean, combined with a weak rhizome structure, suggests that sediments maybe unprotected during winter storms, when most erosion occurs. Hence, replacement of seagrass beds with Caulerpa is likely to have a major influence on annual sediment dynamics at ecosystem scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Argyrou M, Demetropoulos A, Hadjichristophorou M (1999) Expansion of the macroalga Caulerpa racemosa and changes in softbottom macrofaunal assemblages in Moni Bay, Cyprus. Oceanol Acta 22:517–528

    Article  Google Scholar 

  • Balestri E, Benedetti-Cecchi L, Lardicci C (2004) Variability in patterns of growth and morphology of Posidonia oceanica exposed to urban and industrial wastes: contrasts with two reference locations. J Exp Mar Biol Ecol 308:1–21

    Article  Google Scholar 

  • Bay D (1984) A field study of the growth dynamics and productivity of Posidonia oceanica (L.) delile in Calvi Bay, Corsica. Aquat Bot 20:43–64

    Article  Google Scholar 

  • Bos ARR, Bouma TJ, de Kort GLJ, van Katwijk MM (2007) Ecosystem engineering by annual intertidal seagrass beds: sediment accretion and modification. Estuar Coast Shelf Sci 74:344–348

    Article  Google Scholar 

  • Ceccherelli G, Cinelli F (1997) Short-term effects of nutrient enrichment of the sediment and interactions between the seagrass Cymodocea nodosa and the introduced green alga Caulerpa taxifolia in a Mediterranean bay. J Exp Mar Biol Ecol 217:165–177

    Article  Google Scholar 

  • Ceccherelli G, Cinelli F (1998) Habitat effect on spatio-temporal variability in size and density of the introduced alga Caulerpa taxifolia. Mar Ecol Prog Ser 163:289–294

    Article  Google Scholar 

  • de Villele X, Verlaque M (1995) Changes and degradation in a Posidonia oceanica bed invaded by the introduced tropical alga Caulerpa taxifolia in the north western Mediterranean. Botanica Marina 38:79–87

    Article  Google Scholar 

  • Duarte CM, Chiscano CL (1999) Seagrass biomass and production: a reassessment. Aquat Bot 65:159–174

    Article  Google Scholar 

  • Duarte CM, Middelburg JJ, Caraco N (2005) Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2:1–8

    CAS  Google Scholar 

  • Duffy JE (2006) Biodiversity and the functioning of seagrass ecosystems. Mar Ecol Prog Ser 311:233–250

    Article  Google Scholar 

  • Gacia E, Duarte CM (2001) Sediment retention by a Mediterranean Posidonia oceanica meadow: the balance between deposition and resuspension. Estuar Coast Shelf Sci 52:505–514

    Article  Google Scholar 

  • Gacia E, Duarte CM, Middelburg JJ (2002) Carbon and nutrient deposition in a Mediterranean seagrass (Posidonia oceanica) meadow. Limnol Oceanogr 47:23–32

    Article  CAS  Google Scholar 

  • Gambi MC, Nowell ARM, Jumars PA (1990) Flume observations on flow dynamics in Zostera marina (Eelgrass) beds. Mar Ecol Prog Ser 61:159–169

    Article  Google Scholar 

  • Ghisalberti M, Nepf HM (2002) Mixing layers and coherent structures in vegetated aquatic flows. J Geophys Res 107(C2):3011. doi:10.1029/2001JC000871

    Article  Google Scholar 

  • Hendriks IE, van Duren LA, Herman PMJ (2006) Turbulence levels in a flume compared to the field: implications for larval settlement studies. J Sea Res 55:15–29

    Article  Google Scholar 

  • Hendriks IE, Sintes T, Bouma TJ, Duarte CM (2008) Experimental assessment and modeling evaluation of the effects of seagrass (Posidonia oceanica) on flow and particle trapping. Mar Ecol Prog Ser 356:163–173

    Article  Google Scholar 

  • Jaubert JM, Chisholm JRM, Minghelli-Roman A, Marchioretti M, Morrow JH, Ripley HT (2003) Re-evaluation of the extent of Caulerpa taxifolia development in the northern Mediterranean using airborne spectrographic sensing. Mar Ecol Prog Ser 263:75–82

    Article  Google Scholar 

  • Jobson HE, Sayre WW (1970) Vertical transfer in open channel flow. J Hydraulic Eng 96:703–724

    Google Scholar 

  • Jousson O, Pawlowski J, Zaninetti L, Meinesz A, Boudouresque CF (1998) Molecular evidence for the aquarium origin of the green alga Caulerpa taxifolia introduced to the Mediterranean Sea. Mar Ecol Prog Ser 172:275–280

    Article  Google Scholar 

  • Koch EW, Ackerman JD, Verduin J, van Keulen M (2006) Fluid dynamics in seagrass ecology—from molecules to ecosystems. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Dordrecht, pp 193–225

    Google Scholar 

  • Madsen JD, Chambers PA, James WF, Koch EW, Westlake DF (2001) The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444:71–84

    Article  Google Scholar 

  • Marba N, Duarte CM, Cebrian J, Gallegos ME, Olesen B, Sand-Jensen K (1996) Growth and population dynamics of Posidonia oceanica on the Spanish Mediterranean coast: elucidating seagrass decline. Mar Ecol Prog Ser 137:203–213

    Article  Google Scholar 

  • Marba N, Duarte CM, Holmer M, Martinez R, Basterretxea G, Orfila A, Jordi A, Tintore J (2002) Effectiveness of protection of seagrass (Posidonia oceanica) populations in Cabrera National Park (Spain). Environ Conserv 29:509–518

    Google Scholar 

  • Marba N, Duarte CM, Diaz-Almela E, Terrados J, Alvarez E, Martiinez R, Santiago R, Gacia E, Grau AM (2005) Direct evidence of imbalanced seagrass (Posidonia oceanica) shoot population dynamics in the Spanish Mediterranean. Estuaries 28:53–62

    Article  Google Scholar 

  • Morris EP, Peralta G, Brun FG, van Duren L, Bouma TJ, Perez-Llorens JL (2008) Interaction between hydrodynamics and seagrass canopy structure: spatially explicit effects on ammonium uptake rates. Limnol Oceanogr 53:1531–1539

    CAS  Google Scholar 

  • Nepf H, Ghisalberti M, White B, Murphy E (2007) Retention time and dispersion associated with submerged aquatic canopies. Water Resour Res 43(W04422) doi:10.1029/2006WR005362

  • Occhipinti-Ambrogi A, Savini D (2003) Biological invasions as a component of global change in stressed marine ecosystems. Mar Pollut Bull 46:542–551

    Article  CAS  PubMed  Google Scholar 

  • Peirano A, Damasso V, Montefalcone M, Morri C, Bianchi CN (2005) Effects of climate, invasive species and anthropogenic impacts on the growth of the seagrass Posidonia oceanica (L.) Delile in Liguria (NW Mediterranean Sea). Mar Pollut Bull 50:817–822

    CAS  PubMed  Google Scholar 

  • Peralta G, van Duren LA, Morris EP, Bouma TJ (2008) Consequences of shoot density and stiffness for ecosystem engineering benthic macrophytes in flow dominated areas: a hydrodynamic flume study. Mar Ecol Prog Ser 368:103–115

    Article  Google Scholar 

  • Pergent-Martini C, Boudouresque CF, Pasqualini V, Pergent G (2006) Impact of fish farming facilities on Posidonia oceanica meadows: a review. Mar Ecol Evol Perspect 27:310–319

    Google Scholar 

  • Piazzi L, Ceccherelli G, Cinelli F (2001) Threat to macroalgal diversity: effects of the introduced green alga Caulerpa racemosa in the Mediterranean. Mar Ecol Prog Ser 210:149–159

    Article  Google Scholar 

  • Piazzi L, Balata D, Ceccherelli G, Cinelli F (2005) Interactive effect of sedimentation and Caulerpa racemosa var. cylindracea invasion on macroalgal assemblages in the Mediterranean Sea. Estuar Coast Shelf Sci 64:467–474

    Article  Google Scholar 

  • Sánchez-Jerez P, Ramos Esplá AA (1996) Detection of environmental impacts by bottom trawling on Posidonia oceanica (L.) Delile meadows: sensitivity of fish and macroinvertebrate communities. J Aquat Ecosyst Stress Recov 5:239–253

    Article  Google Scholar 

  • van der Heide T, van Nes EH, Geerling GW, Smolders AJP, Bouma TJ, van Katwijk MM (2007) Positive feedbacks in seagrass ecosystems: implications for success in conservation and restoration. Ecosystems 10:1311–1322

    Article  Google Scholar 

  • Velasco D, Bateman A, Redondo JM, DeMedina V (2003) An open channel flow experiment and theoretical study of resistance and turbulent characterization over flexible vegetated linings. Flow Turbulence Combustion 70:69–88

    Article  Google Scholar 

  • Verlaque M, Durand C, Huisman JM, Boudouresque CF, Le Parco Y (2003) On the identity and origin of the Mediterranean invasive Caulerpa racemosa (Caulerpales, Chlorophyta). Eur J Phycol 38:325–339

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the European Network of Excellence “Marine Biodiversity and Ecosystem Function” (MarBEF); FP6, EC contract no. 505446 and a grant from the Fundación BBVA. EPM was supported by a European Union Marie Curie host fellowship for transfer of knowledge, MTKD-CT-2004-509254, the Spanish national project EVAMARIA (CTM2005-00395/MAR) and the regional government of Andalusia project FUNDIV (P07-RNM-2516). We thank G. Tavecchia for help with analyses, L. van IJzerloo for assisting with the calibration of the equipment and J. van Soelen for preparing equipment and processing of samples. Carlo Heip is gratefully acknowledged for granting access to the flume facilities at NIOO-KNAW, CEME and Luca van Duren for taking care of the sterilization unit and filters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iris E. Hendriks.

Additional information

Communicated by U. Sommer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hendriks, I.E., Bouma, T.J., Morris, E.P. et al. Effects of seagrasses and algae of the Caulerpa family on hydrodynamics and particle-trapping rates. Mar Biol 157, 473–481 (2010). https://doi.org/10.1007/s00227-009-1333-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-009-1333-8

Keywords

Navigation