Skip to main content
Log in

Longitudinal and vertical trends in stable isotope signatures (δ13C and δ15N) of omnivorous and carnivorous copepods across the South Atlantic Ocean

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Stable isotope (SI) ratios of carbon (δ13C) and nitrogen (δ15N) were measured in omnivorous and carnivorous deep-sea copepods of the families Euchaetidae and Aetideidae across the Atlantic sector of the Southern Ocean to establish their trophic positions. Due to high and variable C/N ratios related to differences in lipid content, δ13C was corrected using a lipid-normalisation model. δ15N signals ranged from 3.0–6.9‰ in mesopelagic species to 7.0–9.5‰ in bathypelagic congeners. Among the carnivorous Paraeuchaeta species, the epi- to mesopelagic species Paraeuchaeta antarctica had lower δ15N values than the mesopelagic P. rasa and bathypelagic P. barbata. The same trend was observed among omnivorous Aetideidae, but was not significant. In the most abundant species P. antarctica, individuals from the western Atlantic had higher δ13C and δ15N values than specimens at the eastern stations. These longitudinal changes in δ13C and δ15N values were attributed to regional differences in hydrography and sea surface temperature (SST), in particular related to a northward extension of the Antarctic Polar Front (APF) at the easternmost stations. The results indicate that even in a mesopelagic carnivorous species, the changes in surface stable isotope signatures are pronounced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altabet MA (1988) Variations in nitrogen isotopic composition between sinking and suspended particles: implications for nitrogen cycling and particle transformation in the open ocean. Deep Sea Res 35:535–554

    Article  CAS  Google Scholar 

  • Altabet MA, François R (1994a) Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization. Global Biogeochem Cycles 8:103–116

    Article  CAS  Google Scholar 

  • Altabet MA, François R (1994b) The use of nitrogen isotopic ratio for reconstruction of past changes in surface ocean nutrient utilization. In: Zahn R, Pedersen TF, Kaminski MA, Labeyrie L (eds) Carbon cycling in the Glacial Ocean: constraints on the ocean’s role in global change. Springer, Berlin, pp 281–306

    Google Scholar 

  • Altabet MA, Small LF (1990) Nitrogen isotopic ratios in fecal pellets produced by marine zooplankton. Geochim Cosmochim Acta 54:155–163

    Article  CAS  Google Scholar 

  • Auel H (1999) The ecology of Arctic deep-sea copepods (Euchaetidae and Aetideidae). Aspects of their distribution, trophodynamics and effect on the carbon flux. Ber Polarforsch 319:1–97

    Google Scholar 

  • Auel H, Hagen W (2002) Mesozooplankton community structure, abundance and biomass in the central Arctic Ocean. Mar Biol 140:1013–1021

    Article  Google Scholar 

  • Bergmann M, Dannheim J, Bauerfeind E, Klages M (2009) Trophic relationships along a bathymetric gradient at the deep-sea observatory HAUSGARTEN. Deep Sea Res 56:408–424

    Article  CAS  Google Scholar 

  • Best PB, Schell DM (1996) Stable isotopes in southern right whale (Eubalaena australis) baleen as indicators of seasonal movements, feeding and growth. Mar Biol 124:483–494

    Article  Google Scholar 

  • Checkley DMJ, Entzeroth LC (1985) Elemental and isotopic fractionation of carbon and nitrogen by marine, planktonic copepods and implications to the marine nitrogen cycle. J Plankton Res 7:553–568

    Article  CAS  Google Scholar 

  • Cherel Y, Hobson KA (2007) Geographical variation in carbon stable isotope signatures of marine predators: a tool to investigate their foraging areas in the Southern Ocean. Mar Ecol Prog Ser 329:281–287

    Article  CAS  Google Scholar 

  • Cherel Y, Hobson KA, Weimerskirch H (2000) Using stable-isotope analysis of feathers to distinguish moulting and breeding origins of seabirds. Oecologia 122:155–162

    Article  Google Scholar 

  • Dehairs F, Kopczynska E, Nielsen P, Lancelot C, Bakker DCE, Koevei W, Goeyens L (1997) δ13C of Southern Ocean suspended organic matter during spring and early summer: regional and temporal variability. Deep Sea Res 44:129–142

    Article  CAS  Google Scholar 

  • DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506

    Article  CAS  Google Scholar 

  • François R, Altabet MA, Goericke R, McCorkle DC, Brunet C, Poisson A (1993) Changes in the 13C of surface water particulate organic matter across the subtropical convergence in the SW Indian Ocean. Global Biogeochem Cycles 7:627–644

    Article  Google Scholar 

  • Frazer TK (1996) Stable isotope composition (δ13C and δ15N) of larval krill, Euphausia superba, and two of its potential food sources in winter. J Plankton Res 18:1413–1426

    Article  CAS  Google Scholar 

  • Gladbach A, McGill RAR, Quillfeldt P (2007) Foraging areas of Wilson’s storm-petrel Oceanites oceanicus in the breeding and inter-breeding period determined by stable isotope analysis. Polar Biol 30:1005–1012

    Article  Google Scholar 

  • Goering J, Alexander V, Haubenstock N (1990) Seasonal variability of stable carbon and nitrogen isotope ratios of organisms in a North Pacific Bay. Estuar Coast Shelf Sci 30:239–260

    Article  CAS  Google Scholar 

  • Hobson KA (1999) Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120:314–326

    Article  Google Scholar 

  • Hobson KA, Welch HE (1992) Determination of trophic relationships within a high Arctic marine food web using δ 13C and δ 15N analysis. Mar Ecol Prog Ser 84:9–18

    Article  CAS  Google Scholar 

  • Hobson KA, Fisk A, Karnovsky N, Holst M, Gagnon JM, Fortier M (2002) A stable isotope (δ13C, δ15N) model for the North Water food web: implications for evaluating trophodynamics and the flow of energy and contaminants. Deep Sea Res 49:5131–5150

    Article  CAS  Google Scholar 

  • Holmes ME, Eichner C, Struck U, Wefer G (1999) Reconstruction of surface ocean nutrient utilization using stable nitrogen isotopes in sinking particles and sediments. In: Fischer G, Wefer G (eds) The use of proxies in paleoceanography: examples from the South Atlantic. Springer, Berlin, pp 447–468

    Google Scholar 

  • Hopkins TL (1985) The zooplankton community of Croker Passage, Antarctic Peninsula. Polar Biol 4:161–170

    Article  Google Scholar 

  • Hopkins TL, Torres JJ (1988) The zooplankton community in the vicinity of the ice edge, western Weddell Sea, March 1986. Polar Biol 9:79–87

    Article  Google Scholar 

  • Hopkins TL, Lancraft TM, Torres JJ, Donnelly J (1993) Community structure and trophic ecology of zooplankton in the Scotia Sea marginal ice zone in winter (1988). Deep Sea Res 40:81–105

    Article  Google Scholar 

  • Iken K, Bluhm BA, Gradinger R (2005) Food web structure in the high Arctic Canada Basin: evidence from δ13C and δ15N analysis. Polar Biol 28:238–249

    Article  Google Scholar 

  • Jacob U, Mintenbeck K, Brey T, Knust R, Beyer K (2005) Stable isotope food web studies: a case for standardized sample treatment. Mar Ecol Prog Ser 287:251–253

    Article  Google Scholar 

  • Koppelmann R, Böttger-Schnack R, Möbius J, Weikert H (2009) Trophic relationships of zooplankton in the eastern Mediterranean based on stable isotope measurements. J Plankton Res 31:669–686

    Article  CAS  Google Scholar 

  • Laakmann S, Stumpp M, Auel H (2009) Vertical distribution and dietary preferences of deep-sea copepods (Euchaetidae and Aetideidae; Calanoida) in the vicinity of the Antarctic Polar Front. Polar Biol 32:679–689

    Article  Google Scholar 

  • McConnaughey T, McRoy CP (1979) Food-web structure and the fractionation of carbon isotopes in the Bering Sea. Mar Biol 53:257–262

    Article  CAS  Google Scholar 

  • McCutchan JH Jr, Lewis M Jr, Kendall C, McGrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378–390

    Article  CAS  Google Scholar 

  • Minagawa M, Wada T (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim Cosmochim Acta 48:1135–1140

    Article  CAS  Google Scholar 

  • Mintenbeck K, Jacob U, Knust R, Arntz WE, Brey T (2007) Depth-dependence in stable isotope ratio δ15N of benthic POM consumers: the role of particle dynamics and organism trophic guild. Deep-Sea Res 54:1015–1023

    Article  Google Scholar 

  • Mintenbeck K, Brey T, Jacob U, Knust R, Struck U (2008) How to account for the lipid effect on carbon stable-isotope ratio (δ13C): sample treatment effects and model bias. J Fish Biol 72:815–830

    Article  CAS  Google Scholar 

  • Montoya JP (1994) Nitrogen isotope fractionation in the modern ocean: implications for the sedimentary record. In: Zahn R, Pedersen TF, Kaminski MA, Labeyrie L (eds) Carbon cycling in the Glacial Ocean: constraints on the ocean’s role in global change. Springer, Berlin, pp 259–279

    Google Scholar 

  • Montoya JP, Carpenter EJ, Capone DG (2002) Nitrogen fixation and nitrogen isotope abundances in zooplankton of the oligotrophic North Atlantic. Limnol Oceanogr 47:1617–1628

    CAS  Google Scholar 

  • Moore JK, Abbott MR, Richman JG (1999) Location and dynamics of the Antarctic Polar Front from satellite sea surface temperature data. J Geophys Res 104:3059–3073

    Google Scholar 

  • Nyssen F, Brey T, Lepoint G, Dauby P, Bouquegneau JM, De Broyer C (2002) A stable isotope approach to the eastern Wedell Sea trophic web: focus on benthic amphipods. Polar Biol 25:280–287

    Google Scholar 

  • Olsen EM, Jørstad T, Kaartvedt S (2000) The feeding strategies of two large marine copepods. J Plankton Res 22:1513–1528

    Article  Google Scholar 

  • Øresland V (1995) Winter population structure and feeding of the chaetognath Eukrohnia hamata and the copepod Euchaeta antarctica in Gerlache Strait, Antarctic Peninsula. Mar Ecol Prog Ser 119:77–86

    Article  Google Scholar 

  • Øresland V, Ward P (1993) Summer and winter diet of four carnivorous copepod species around South Georgia. Mar Ecol Prog Ser 98:73–78

    Article  Google Scholar 

  • Park T (1994) Taxonomy and distribution of the marine calanoid copepod family Euchaetidae. Bulletin of the Scripps Institution of Oceanography. University of California, San Diego, p 29

  • Peters KE, Walters CC, Moldowan JM (2005) The biomarker guide: biomarkers and isotopes in the environment and human history, vol 1. Cambridge University Press, Cambridge

    Google Scholar 

  • Pollard RT, Lucas MI, Read JF (2002) Physical controls on biogeochemical zonation in the Southern Ocean. Deep Sea Res 49:3289–3305

    Article  CAS  Google Scholar 

  • Polunin NVC, Morales-Nin B, Pawsey WE, Cartes JE, Pinnegar JK, Moranta J (2001) Feeding relationships in Mediterranean bathyal assemblages elucidated by stable nitrogen and carbon isotope data. Mar Ecol Prog Ser 220:13–23

    Article  CAS  Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718

    Article  Google Scholar 

  • Rau GH, Takahashi T, De Marais DJ (1989) Latitudinal variations in plankton δ13C: implications for CO2 and productivity in past oceans. Nature 341:516–518

    Article  CAS  PubMed  Google Scholar 

  • Rau GH, Hopkins TL, Torres JJ (1991a) 15N/14N and 13C/12C in Weddell Sea invertebrates: implications for feeding diversity. Mar Ecol Prog Ser 77:1–6

    Article  CAS  Google Scholar 

  • Rau GH, Takahashi T, Des Marais DJ, Sullivan CW (1991b) Particulate organic matter δ13C variations across the Drake Passage. J Geophys Res 96:15131–15135

    Article  CAS  PubMed  Google Scholar 

  • Rau GH, Ainley DG, Bengtson JL, Torres JJ, Hopkins TL (1992a) 15N/14N and 13C/12C in Weddell Sea birds, seals, and fish: implications for diet and trophic structure. Mar Ecol Prog Ser 84:1–8

    Article  CAS  Google Scholar 

  • Rau GH, Takahashi T, Des Marais DJ, Repeta DJ, Martin JH (1992b) The relationship between δ13C of organic matter and [CO2(aq)] in ocean surface water: data from a JGOFS site in the northeast Atlantic ocean and a model. Geochim Cosmochim Acta 56:1413–1419

    Article  CAS  PubMed  Google Scholar 

  • Schmidt K, Atkinson A, Stübing D, McClelland JW, Montoya JP, Voss M (2003) Trophic relationships among Southern Ocean copepods and krill: some uses and limitations of a stable isotope approach. Limnol Oceanogr 48:277–289

    Google Scholar 

  • Schnack-Schiel SB, Hagen W, Mizdalski E (1998) Seasonal carbon distribution of copepods in the eastern Weddell Sea, Antarctica. J Mar Syst 17:305–311

    Article  Google Scholar 

  • Schnack-Schiel SB, Michels J, Mizdalski E, Schodlok MP, Schröder M (2008) Composition and community structure of zooplankton in the sea ice-covered western Weddell Sea in spring 2004—with emphasis on calanoid copepods. Deep Sea Res 55:1040–1055

    Article  Google Scholar 

  • Smyntek PM, Teece MA, Schulz KL, Thackeray SJ (2007) A standard protocol for stable isotope analysis of zooplankton in aquatic food web research using mass balance correction models. Limnol Oceanogr 52:2135–2146

    CAS  Google Scholar 

  • Søreide JE, Hop H, Carroll ML, Falk-Petersen S, Hegseth EN (2006a) Seasonal food web structures and sympagic-pelagic coupling in the European Arctic revealed by stable isotopes and a two-source food web model. Prog Oceanogr 71:59–87

    Article  Google Scholar 

  • Søreide JE, Tamelander T, Hop H, Hobson KA, Johansen I (2006b) Sample preparation effects on stable C and N isotope values: a comparison of methods in Arctic marine food web studies. Mar Ecol Prog Ser 328:17–28

    Article  Google Scholar 

  • Sugisaki H, Tsuda A (1995) Nitrogen and carbon stable isotopic ecology in the ocean: the transportation of organic materials through the food web. In: Sakai H, Nozaki Y (eds) Biochemical processes and ocean flux in the Western Pacific. Terra Scientific Publishing Company (TERRAPUB), Tokyo, pp 307–317

    Google Scholar 

  • Tamelander T, Søreide JE, Hop H, Carroll ML (2006) Fractionation of stable isotopes in the Arctic marine copepod Calanus glacialis: effects on the isotopic composition of marine particulate organic matter. J Exp Mar Biol Ecol 333:231–240

    Article  CAS  Google Scholar 

  • Tieszen LL, Boutton TW, Tesdahl KG, Slade NA (1983) Fractionation and turnover of stable carbon isotopes in animal tissues: implications for δ13C analysis of diet. Oecologia 57:32–37

    Article  Google Scholar 

  • Trull TW, Armand L (2001) Insights into Southern Ocean carbon export from the δ13C of particles and dissolved inorganic carbon during the SOIREE iron fertilisation experiment. Deep Sea Res 48:2655–2680

    Article  CAS  Google Scholar 

  • Vander Zanden MJ, Rasmussen JB (1999) Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology 80:1395–1404

    Article  Google Scholar 

  • Wada E, Terazaki M, Kabaya Y, Nemoto T (1987) 15N and 13C abundances in the Antarctic Ocean with emphasis on the biogeochemical structure of the food web. Deep Sea Res 34:829–841

    Article  CAS  Google Scholar 

  • Ward P, Wood AG (1988) The distribution of the Euchaetidae (Copepoda: Calanoida) around South Georgia. Polar Biol 9:45–52

    Article  Google Scholar 

  • Yen J (1987) Predation by a carnivorous marine copepod, Euchaeta norvegica Boeck, on eggs and larvae of the North Atlantic cod Gadus morhua L. J Exp Mar Biol Ecol 112:283–296

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the captain and crew of R/V Polarstern for their skilful support during the cruise. Meike Stumpp assisted in sampling and field work. This study was funded by Deutsche Forschungsgemeinschaft (DFG project AU 175/3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silke Laakmann.

Additional information

Communicated by U. Sommer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laakmann, S., Auel, H. Longitudinal and vertical trends in stable isotope signatures (δ13C and δ15N) of omnivorous and carnivorous copepods across the South Atlantic Ocean. Mar Biol 157, 463–471 (2010). https://doi.org/10.1007/s00227-009-1332-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-009-1332-9

Keywords

Navigation