Marine Biology

, Volume 156, Issue 9, pp 1917–1928 | Cite as

Latitudinal gradients in species richness for South American Mytilidae and Ostreidae: can alternative hypotheses be evaluated by a correlative approach?

  • Alvar CarranzaEmail author
  • Omar Defeo
  • Juan Carlos Castilla
  • Thiago Fernando L. V. B. Rangel
Original Paper


We tested to what extent mean sea surface temperature, geometric constraints in range size frequency distributions (the mid-domain effect) and geographical coastline distance to the equator are related to species richness of coastal Mytilidae and Ostreidae in the Pacific and Atlantic coasts of South America (excluding islands). The location and magnitude of the peaks in species richness, as well as the shape of the pattern, varied between oceans. Results were not biased by spatial autocorrelation, although strong multicollinearity among predictor variables was detected. However, these regional-extent regression models suggest differences in the causal factors that explain richness gradients of studied bivalves in South American coasts, most likely related to historical events such as the Southeastern Pacific Pleistocene mass extinction of bivalves. Our results reinforced the conclusion that there is no single best explanatory cause for the latitudinal gradient in species richness and showed that the correlative approach is not useful when predictor variables are strongly correlated.


Species Richness Bivalve Variance Inflation Factor Pacific Coast Latitudinal Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support to A. C. and O. D. by The Nature Conservancy, The Kabcenell Family Foundation and the project UTF/URU/025/URU (Uruguay) is acknowledged. T. F. L. V. B. R. is supported by a CAPES/Fulbright fellowship. J. C. C. acknowledges support from CASEB, FONDAP, Project 15001-0001. T. Blackburn and D. J. Currie are acknowledged for the valuable comments made on a previous version of this manuscript. Special thanks to L. Ortega (Dirección Nacional de Recursos Acuáticos) F. Scarabino (Museo Nacional de Historia Natural y Antropología, Uruguay), M. Lee and L. Prado (Pontificia Universidad Católica, Chile) that provided invaluable bibliography. A. C. acknowledges Marina and Estela for encouragement and support.


  1. Acha EM, Mianzan HW, Guerrero RA, Favero M, Bava J (2004) Marine fronts at the continental shelves of austral South America: physical and ecological processes. J Mar Syst 44:83–105. doi: CrossRefGoogle Scholar
  2. Algar AC, Kerr JT, Currie DJ (2007) A test of metabolic theory as the mechanism underlying broad-scale species-richness gradients. Glob Ecol Biogeogr 16:170–178. doi: CrossRefGoogle Scholar
  3. Astorga A, Fernández M, Boschi EE, Lagos N (2003) Two oceans, two taxa and one mode of development: latitudinal diversity patterns of South American crabs and test for possible causal processes. Ecol Lett 6:420–427. doi: CrossRefGoogle Scholar
  4. Bellolio GC, Toledo A, Dupré E (1996) Larval development of Choromytilus chorus (Molina, 1782) reared in laboratory. Sci Mar 60:336–353Google Scholar
  5. Borthagaray AI, Carranza A (2007) Mussels as ecosystem engineers: their contribution to species richness in a rocky littoral community. Acta Oecol 31:243–250. doi: CrossRefGoogle Scholar
  6. Brehm G, Colwell RK, Kluge J (2007) The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient. Glob Ecol Biogeogr 16:205–219CrossRefGoogle Scholar
  7. Broitman BR, Navarrete SA, Smith F, Gaines SD (2001) Geographic variation of southeastern Pacific intertidal communities. Mar Ecol Prog Ser 224:21–34. doi: CrossRefGoogle Scholar
  8. Burnham KP, Anderson DR (1998) Model selection and inference: a practical information-theoretic approach. Springer, New York, 353 ppCrossRefGoogle Scholar
  9. Cardelús C, Colwell RK, Watkins JEJ (2006) Vascular epiphyte distribution patterns: explaining the mid-elevation richness peak. J Ecol 94:144–156. doi: CrossRefGoogle Scholar
  10. Carranza A, Colwell RK, Rangel TFLVB (2008) Distribution of megabenthic gastropods along environmental gradients: the mid-domain effect and beyond. Mar Ecol Prog Ser 367:193–202. doi: CrossRefGoogle Scholar
  11. Clarke A, Gaston KJ (2006) Climate, energy and diversity. Proc R Soc Lond B Biol Sci 273:2257–2266. doi: CrossRefGoogle Scholar
  12. Coan EV, Scott PV, Bernard FR (2000) Bivalve seashells of Western North America: marine bivalve mollusks from Arctic Alaska to Baja California. Santa Barbara Museum of Natural History, Santa Barbara, p 764Google Scholar
  13. Colwell RK (2006) RangeModel a Monte Carlo simulation tool for assessing geometric constraints on species richness. Version 5. User’s Guide and application published at:
  14. Colwell RK, Rahbek C, Gotelli N (2004) The mid-domain effect and species richness patterns: what have we learned so far? Am Nat 163:E1–E23. doi: CrossRefGoogle Scholar
  15. Colwell RK, Rahbek C, Gotelli NJ (2005) The mid-domain effect: there’s a baby in the bathwater. Am Nat 166:E149–E154. doi: CrossRefGoogle Scholar
  16. Commito JA, Celano EA, Celico HJ, Como S, Johnson CP (2005) Mussels matter: postlarval dispersal dynamics altered by a spatially complex ecosystem engineer. J Exp Mar Biol Ecol 316:133–147. doi: CrossRefGoogle Scholar
  17. Commito JA, Dow WE, Grupe BM (2006) Hierarchical spatial structure in soft-bottom mussel beds. J Exp Mar Biol Ecol 330:27–37. doi: CrossRefGoogle Scholar
  18. Cranfield HJ, Michael KP (1989) Larvae of the incubatory oyster Tiostrea chilensis (Bivalvia: Ostreidae) in the plankton of central and southern New Zealand. N Z J Mar Freshw Res 23:51–60CrossRefGoogle Scholar
  19. Currie DJ (1991) Energy and large-scale patterns of animal and plant-species richness. Am Nat 137:27–49. doi: CrossRefGoogle Scholar
  20. Currie DJ, Mittelbach GG, Cornell HV, Field R, Guégan J-F, Hawkins BA, Kaufman DM (2004) Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol Lett 7:1121–1134. doi: CrossRefGoogle Scholar
  21. De Schweinitz EH, Lutz RA (1976) Larval development of the northern horse mussel, Modiolus modiolus (L.), including a comparison with the larvae of Mytilus edulis L. as an aid in planktonic identification. Biol Bull 150:348–360. doi: CrossRefGoogle Scholar
  22. Diniz-Filho JAF, de Santána CER, de Souza MC, Rangel TF (2002) Null models and spatial patterns of species richness in South American birds of prey. Ecol Lett 5:47–55. doi: CrossRefGoogle Scholar
  23. Floeter SR, Soares-Gomes A (1999) Biogeographic and species richness patterns of gastropoda on the Southwestern Atlantic. Rev Bras Biol 59:567–575. doi: CrossRefGoogle Scholar
  24. Fortes RR, Absalão RS (2004) The applicability of Rapoport’s rule to the marine molluscs of the Americas. J Biogeogr 31:1909–1916. doi: CrossRefGoogle Scholar
  25. Graham MH (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84:2809–2815. doi: CrossRefGoogle Scholar
  26. Gutiérrez JL, Jones CG, Strayer DL, Iribarne OO (2003) Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos 101:79–90. doi: CrossRefGoogle Scholar
  27. Harrison S, Cornell HV (2007) Introduction: merging evolutionary and ecological approaches to understanding geographic gradients in species richness. Am Nat 170:S1–S4. doi: CrossRefGoogle Scholar
  28. Harrison S, Grace JB (2007) Biogeographic affinity helps explain productivity-richness relationships at regional and local scales. Am Nat 170:S5–S15. doi: CrossRefGoogle Scholar
  29. Hillebrand H (2004) On the generality of the latitudinal diversity gradient. Am Nat 163:192–211. doi: CrossRefGoogle Scholar
  30. Jetz W, Rahbek C (2002) Geographic range size and determinants of avian species richness. Science 297:1548–1551. doi: CrossRefGoogle Scholar
  31. Johnson KG, Todd JA, Jackson JBC (2007) Coral reef development drives molluscan diversity increase at local and regional scales in the late Neogene and Quaternary of the southwestern Caribbean. Paleobiology 33:24–52. doi: CrossRefGoogle Scholar
  32. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386. doi: CrossRefGoogle Scholar
  33. Keen AM (1971) Sea shells of tropical west America: marine mollusks from Baja California to Peru, 2nd edn. Stanford University Press, Stanford, p 1064Google Scholar
  34. Kennedy VS (1977) Reproduction in Mytilus edulis aoteanus and Aulacomya maoriana (Mollusca; Bivalvia) from Taylors Mistake, New Zealand. N Z J Mar Freshw Res 11:255–267CrossRefGoogle Scholar
  35. Lasiak T (1986) The Reproductive cycles of the intertidal bivalves Crassostrea cucullata (Born, 1778) and Perna Perna (Linnaeus, 1758) from Transkei coast, Southern Africa. Veliger 29:226–230Google Scholar
  36. Linse K (1999) Mollusca of the Magellan region. A checklist of the species and their distribution. Sci Mar 63:399–407CrossRefGoogle Scholar
  37. Lough RG, Gonor JJ (1971) Early embryonic stages of Adula californiensis (Pelecypoda: Mytilidae) and the effect of temperature and salinity on developmental rate. Mar Biol (Berl) 8:118–125. doi: CrossRefGoogle Scholar
  38. Millar RH, Hollis PJ (1963) Abbreviated pelagic life of Chilean and New Zealand oysters. Nature 197:512–513. doi: CrossRefGoogle Scholar
  39. Mittelbach GG, Schemske DW, Cornell HV, Allen AP, Brown JM, Bush MB, Harrison SP, Hurlbert AH, Knowlton N, Lessios HA, McCain CM, McCune AR, McDade LA, McPeek MA, Near TJ, Price TD, Ricklefs RE, Roy K, Sax DF, Schluter D, Sobel JM, Turelli M (2007) Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol Lett 10:315–331. doi: CrossRefGoogle Scholar
  40. Monteiro-Ribas W, Rocha-Miranda F, Romano RC, Quintanilha J (2006) Larval development of Brachidontes solisianus (Bivalvia, Mytilidae), with notes on differences between its hinge system and that of the mollusk Perna perna. Braz J Biol 66:109–116. doi: CrossRefGoogle Scholar
  41. Navarrete SA, Broitman B, Wieters EA, Finke GR, Venegas RM, Sotomayor A (2002) Recruitment of intertidal invertebrates in the Southeast Pacific: interannual variability and the 1997–1998 El Niño. Limnol Oceanogr 47:791–802CrossRefGoogle Scholar
  42. Paredes C, Huamán P, Cardoso F, Vivar R, Vera V (1991) Estado actual del conocimiento de los moluscos acuáticos en el Perú. Rev Peruana Biol 6:5–47Google Scholar
  43. Prado L, Castilla JC (2006) The bioengineer Perumytilus purpuratus (Mollusca: Bivalvia) in central Chile: biodiversity, habitat structural complexity and environmental heterogeneity. J Mar Biol Assoc UK 86:417–421. doi: CrossRefGoogle Scholar
  44. Rangel TFLVB, Diniz-Filho JAF, Bini LM (2006) Towards an integrated computational tool for spatial analysis in macroecology and biogeography. Glob Ecol Biogeogr 15:321–327. doi: CrossRefGoogle Scholar
  45. Ricklefs RE (2007) History and diversity: explorations at the intersection of ecology and evolution. Am Nat 107:S56–S70. doi: CrossRefGoogle Scholar
  46. Rios EC (1994) Seashells of Brazil, 2nd edn. Fundação Universidade de Rio Grande, Museu Oceanográfico, Rio Grande do Sul, p 328Google Scholar
  47. Rivadeneira M (2005) Macroecología evolutiva de los bivalvos marinos de la costa Pacifica de Sudamerica. PhD Thesis, Facultad de Ciencias Biológicas, Universidad Católica de Chile, SantiagoGoogle Scholar
  48. Rivadeneira MM, Marquet PA (2007) Selective extinction of late Neogene bivalves on the temperate Pacific coast of South America. Paleobiology 33:455–468. doi: CrossRefGoogle Scholar
  49. Roy K, Jablonski D, Valentine JW, Rosenberg G (1998) Marine latitudinal diversity gradients: Tests of causal hypotheses. Proc Natl Acad Sci USA 95:3699–3721. doi: CrossRefGoogle Scholar
  50. Roy K, Jablonski D, Valentine JW (2000) Dissecting latitudinal diversity gradients: functional groups and clades of marine bivalves. Proc R Soc Lond B 267:293–299. doi: CrossRefGoogle Scholar
  51. Scarabino F (2003) Lista sistemática de los Bivalvia marinos y estuarinos del Uruguay. Commun Soc Malacol Urug 8:229–259Google Scholar
  52. Thiel ME, Macaya E, Acuña W, Arntz H, Bastias K, Brokordt P, Camus JC, Castilla LR, Castro M, Cortés CP, Dumont R, Escribano M, Fernández DA, Lancellotti JA, Gajardo CF, Gaymer I, Gómez AE, González HE, González PA, Haye JE, Illanes JL, Iriarte G, Luna-Jorquera C, Luxoro PH, Manríquez V, Marín P, Muñoz SA, Navarrete E, Pérez E, Poulin J, Sellanes A, Sepúlveda W, Stotz F, Tala A, Thomas CA, Vargas JA, Váquez A, Vega A (2007) The Humboldt current system of Northern-central Chile. Oceanographic processes, ecological interactions and socio-economic feedback. Oceanogr Mar Biol Annu Rev 45:195–344Google Scholar
  53. Valdovinos C (1999) Biodiversidad de moluscos chilenos: base de datos taxonomica y distribucional. Gayana (Zool) 63:59–112Google Scholar
  54. Valdovinos C, Navarrete SA, Marquet PA (2003) Mollusk species diversity in the Southeastern Pacific: why are there more species towards the pole? Ecography 26:134–139. doi: CrossRefGoogle Scholar
  55. Vermeij GJ (2005) One-way traffic in the western Atlantic: causes and consequences of Miocene to early Pleistocene molluscan invasions in Florida and the Caribbean. Paleobiology 31:624–642CrossRefGoogle Scholar
  56. Zelaya DG (2005) The bivalves from the Scotia Arc islands: species richness and faunistic affinities. Sci Mar 69:113–122. doi: CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Alvar Carranza
    • 1
    • 2
    Email author
  • Omar Defeo
    • 1
    • 2
  • Juan Carlos Castilla
    • 3
  • Thiago Fernando L. V. B. Rangel
    • 4
  1. 1.UNDECIMARFacultad de CienciasMontevideoUruguay
  2. 2.Dirección Nacional de Recursos AcuáticosMontevideoUruguay
  3. 3.Facultad de Ciencias Biológicas, Center for Advanced Studies in Ecology and Biodiversity (CASEB)Pontificia Universidad Católica de ChileSantiagoChile
  4. 4.Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsUSA

Personalised recommendations