Skip to main content

Advertisement

Log in

Evaluation of the 18S rRNA clone library approach to study the diversity of the macroeukaryotic leaf-epiphytic community of the seagrass Posidonia oceanica (L.) Delile

  • Method
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The sequence comparisons among genes codifying for the RNA component of the small ribosomal subunit (16S rRNA or 18S rRNA) in cellular organisms have been largely used to reconstruct their phylogenies, and hence the identification of taxa by means of a molecular approach. Furthermore, the direct DNA isolation from environmental samples and the PCR amplification of the pool of rRNA genes with the subsequent cloning and sequencing have opened the door to the description of naturally occurring microbial communities independently from any culturing technique or morphological identification. These studies have unveiled an enormous hidden diversity in a wide variety of microbial communities. Our main objective was to evaluate the usefulness of the 18S rRNA gene clone libraries to describe the structure of the macroeukaryotic leaf-epiphytic assemblage of the seagrass Posidonia oceanica, and monitor the changes occurring in different stages of its seasonal succession (winter, spring and summer). To that end, we compared the results of these libraries with those provided by classical microscopy techniques. Among both approaches, the screening of clone libraries rendered the highest number of distinct units named operational phylogenetic units. However, diversity estimates provided by both methods were comparable and rendered the highest Shannon Diversity Index (H′) at the end of the succession. The major discrepancies were on the different occurrence of some groups. For example, macroalgae were the most frequent epiphytes counted by microscopy, whereas metazoa (specially, bryozoa) dominated the clone libraries. Altogether the results indicate that clone libraries constitute an excellent complementary approach to classical microscopy methods. To the best of our knowledge, this is the first attempt to describe a marine macroeukaryotic community using a molecular approach such as the analysis of 18S rRNA gene clone libraries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Antolic B (1986) Epiphytic flora on leaves of Posidonia oceanica (L.) Delile from the area of Dubrovnik (South Adriatic). Acta Adriat 27(1–2):37–49

    Google Scholar 

  • Ballesteros E (1987) Estructura i dinàmica del poblament algal de les fulles de Posidonia oceanica (L.) Delile als herbeis de Tossa de Mar (Girona). Bullt Inst Cat Hist Nat 54(Sec Bot 6):13–30

    Google Scholar 

  • Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2004) GenBank: update. Nucleic Acids Res 32:23–26. doi:https://doi.org/10.1093/nar/gkh045

    Article  Google Scholar 

  • Borowitzka MA, Lavery PS, Van Keulen M (2006) Epiphytes of seagrasses. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Dordrecht, pp 441–461

    Google Scholar 

  • Brower JE, Zar JH (eds) (1984) Field and laboratory methods for general ecology, 2nd edn. W.C. Brown Publishers, Dubuque

    Google Scholar 

  • Buia MC, Cormaci M, Furnari G, Mazzella L (1989) Posidonia oceanica off Capo Passero (Sicily, Italy): leaf phenology and leaf algal epiphytic community. In: Boudouresque CF, Meinesz A, Fresi E, Gravez V (eds) Second international workshop on Posidonia oceanica Beds. GIS Posidonie Publication, Porquerolles, pp 127–143

    Google Scholar 

  • Casola E, Scardi M, Mazzella L, Fresi E (1987) Structure of the epiphytic community of Posidonia oceanica leaves in a shallow meadow. PSZNI Mar Ecol 8(4):285–296. doi:https://doi.org/10.1111/j.1439-0485.1987.tb00189.x

    Article  Google Scholar 

  • Cinelli F, Cormaci M, Furnari G, Mazzella L (1984) Epiphytic macroflora of Posidonia oceanica (L.) Delile leaves around the island of Ischia (Gulf of Naples). In: Boudouresque CF, Jeudy de Grissac A, Olivier J (eds) First international workshop on Posidonia oceanica Beds. GIS Posidonie Publication, Marseille, pp 91–99

    Google Scholar 

  • Colognola R, Gambi MC, Chessa LA (1984) Polychaetes of the Posidonia oceanica (L.) Delile foliar substratum: comparative observations. In: Boudouresque CF, Jeudy de Grissac A, Olivier J (eds) First international workshop on Posidonia oceanica Beds. GIS Posidonie Publication, Marseille, pp 101–108

    Google Scholar 

  • DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689. doi:https://doi.org/10.1073/pnas.89.12.5685

    Article  CAS  Google Scholar 

  • Díez B, Pedrós-Alió C, Massana R (2001) Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small subunit rRNA gene cloning and sequencing. Appl Environ Microbiol 67(7):2932–2941. doi:https://doi.org/10.1128/AEM.67.7.2932-2941.2001

    Article  Google Scholar 

  • Eickbush TH, Eickbush DG (2007) Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175:477–485. doi:https://doi.org/10.1534/genetics.107.071399

    Article  CAS  Google Scholar 

  • Giovannoni SJ, Britschgi TB, Moyer CL, Field KG (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60–63. doi:https://doi.org/10.1038/345060a0

    Article  CAS  Google Scholar 

  • Guiry MD, Guiry GM (2009) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org

  • Head IM, Saunders JR, Pickup RW (1998) Microbial evolution, diversity, and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microb Ecol 35(1):1–21. doi:https://doi.org/10.1007/s002489900056

    Article  CAS  Google Scholar 

  • Hofrichter R (ed) (2005) El Mar Mediterráneo. Fauna-Flora-Ecología. Vol. II/1 Guía sistemática y de identificación. Ediciones Omega, Barcelona

    Google Scholar 

  • Hong YK, Sohn CH, Lee KW, Kim HG (1997) Nucleic acid extraction from seaweed tissues for polymerase chain reaction. J Mar Biotechnol 5(2–3):95–99

    CAS  Google Scholar 

  • Kocak F, Balduzzi A, Avni Benli H (2002) Epiphytic bryozoan of Posidonia oceanica (L.) Delile meadow in the northern Cyprus (Eastern Mediterranean). Indian J Mar Sci 31(3):235–238

    Google Scholar 

  • Lepoint G, Jacquemart J, Bouquegneau JM, Demoulin V, Gobert S (2007) Field measurements of inorganic nitrogen uptake by epiflora components of the seagrass Posidonia oceanica (Monocotyledons, Posidoniaceae). J Phycol 43:208–218. doi:https://doi.org/10.1111/j.1529-8817.2007.00322.x

    Article  CAS  Google Scholar 

  • López-García P, Rodriguez-Valera F, Pedrós-Alió C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607. doi:https://doi.org/10.1038/35054537

    Article  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371. doi:https://doi.org/10.1093/nar/gkh293. http://www.arbhome.de/

    Article  CAS  Google Scholar 

  • Luo Q, Krumholz LR, Najar FZ, Peacock AD, Roe BA, White DC, Elshahed MS (2005) Diversity of the microeukaryotic community in Sulfide-Rich Zodletone Spring (Oklahoma). Appl Environ Microbiol 71(10):6175–6184. doi:https://doi.org/10.1128/AEM.71.10.6175-6184.2005

    Article  CAS  Google Scholar 

  • Magurran AE (ed) (1989) Diversidad ecológica y su medición. Ediciones Vedrá, Barcelona

    Google Scholar 

  • Massana R, Guillou L, Diez B, Pedros-Alio C (2002) Unveiling the organisms behind novel eukaryotic ribosomal DNA sequences from the ocean. Appl Environ Microbiol 68(9):4554–4558. doi:https://doi.org/10.1128/AEM.68.9.4554-4558.2002

    Article  CAS  Google Scholar 

  • Mazzella L, Scipione MB, Buia MC (1989) Spatio-temporal distribution of algal and animal communities in a Posidonia oceanica meadow. Mar Ecol Evol Perspect 10:107–129. doi:https://doi.org/10.1111/j.1439-0485.1989.tb00069.x

    Article  Google Scholar 

  • Medina-Pons FJ, Terrados J, Rosselló-Móra R (2008) Application of temperature gradient gel electrophoresis technique to monitor changes in the structure of the eukaryotic leaf-epiphytic community of Posidonia oceanica. Mar Biol (Berl) 155:451–460. doi:https://doi.org/10.1007/s00227-008-1037-5

    Article  Google Scholar 

  • Ott JA (1980) Growth and production in Posidonia oceanica (L.) Delile. PSZNI Mar Ecol 1:47–64. doi:https://doi.org/10.1111/j.1439-0485.1980.tb00221.x

    Article  Google Scholar 

  • Panayotidis P, Boudouresque CF (1981) Végétation marine de l’Ile de Port-Cros (Parc National) XXI. Aire minimale et patchiness de la flore épiphyte des feuilles de Posidonia oceanica. Trav Sci Parc Nation Port-Cros 7:71–84

    Google Scholar 

  • Pergent G, Pergent-Martini C (1993) Leaf renewal cycle of Posidonia oceanica in the bay of Lacco Ameno (Ischia, Italy) using lepidochronological method. Posidonia Newsl 4(2):11–20

    Google Scholar 

  • Procaccini G, Buia MC, Gambi MC, Pérez M, Pergent G, Pergent-Martini C, Romero J (2003) The seagrasses of the Western Mediterranean. In: Green EP, Short FT (eds) World Atlas of Seagrasses. UNEP World Conservation Monitoring Centre. University of California Press, Berkeley, pp 48–58

    Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs B, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35(21):7188–7196. doi:https://doi.org/10.1093/nar/gkm864

    Article  CAS  Google Scholar 

  • Romari K, Vaulot D (2004) Composition and temporal variability of picoeukaryote communities at a coastal site of the English Channel from 18S rDNA sequences. Limnol Oceanogr 49(3):784–798

    Article  Google Scholar 

  • Romero J (1988) Epífitos de las hojas de Posidonia oceanica: variaciones estacionales y batimétricas de biomasa en la pradera de las islas Medes (Girona). Oecol Aquat 9:19–25

    Google Scholar 

  • Rosselló-Móra R, López-López A (2008) The least common denominator: species or operational taxonomic units? In: Zengler K (ed) Accessing uncultivated microorganisms. From the environment to organisms and genomes and back. ASM press, Washington, pp 117–130

    Google Scholar 

  • Russo GF, Fresi E, Vinci D, Chessa LA (1984) Mollusk syntaxon of foliar stratum along a depth gradient in Posidonia oceanica (L.) Delile meadow: seasonal variability. In: Boudouresque CF, Jeudy de Grissac A, Olivier J (eds) First international workshop on Posidonia oceanica Beds. GIS Posidonie Publications, Marseille, pp 311–318

    Google Scholar 

  • Sambrook J, Russell DW (2001) In vitro amplification of DNA by PCR. Molecular cloning: a laboratory manual. Third edition. Vol. II, Chapter 3, Sect. 8.1. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sequencher v 4.7 (2006) Gene Codes Corporation, Ann Arbor, Michigan. http://www.sequencher.com

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. doi:https://doi.org/10.1093/bioinformatics/btl446

    Article  CAS  Google Scholar 

  • Van de Peer Y, Neefs JM, De Rijk P, De Wachter R (1993) Evolution of eukaryotes as deduced from small ribosomal subunit RNA sequences. Biochem Syst Ecol 21(1):43–55. doi:https://doi.org/10.1016/0305-1978(93)90008-F

    Article  Google Scholar 

  • Van der Ben D (1971) Les épiphytes des feuilles de Posidonia oceanica Delile sur les côtes françaises de la Méditerranée. Mem Inst R Sci Nat Belg 168:1–101

    Google Scholar 

  • Vidal R, Meneses I, Smith M (2002) Enhanced DNA extraction and PCR amplification of SSU ribosomal genes from crustose coralline algae. J Appl Phycol 14(3):223–227. doi:https://doi.org/10.1023/A:1019975409640

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Marine Microbiology Group and the Marine Macrophyte Ecology Group from IMEDEA for facilities and help with the field and lab work. This study was funded by the Government of the Balearic Islands (Acció Especial de recerca, desenvolupament tecnològic i innovació (2006) and the UGIZC research contract), the Spanish Ministry of Education and Science (Acción Complementaria CTM2005-23775-E) and the Spanish Ministry of Science and Innovation (research projects CLG2006-12714-C02-02 and Consolider-Ingenio 2010 CE-CSD2007-0005). F.J.M.P thanks ‘Conselleria de Economia, Hisenda i Innovació’ of Balearic Government for a PhD grant (FPI05) that supported this work. All experiments done in this study comply with the current laws of Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Medina-Pons.

Additional information

Communicated by T. Reusch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medina-Pons, F.J., Terrados, J., López-López, A. et al. Evaluation of the 18S rRNA clone library approach to study the diversity of the macroeukaryotic leaf-epiphytic community of the seagrass Posidonia oceanica (L.) Delile. Mar Biol 156, 1963–1976 (2009). https://doi.org/10.1007/s00227-009-1221-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-009-1221-2

Keywords

Navigation