Skip to main content

Advertisement

Log in

Predators selectively graze reproductive structures in a clonal marine organism

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Although the fitness consequences of herbivory on terrestrial plants have been extensively studied, considerably less is known about how partial predation impacts the fitness of clonal marine organisms. The trophic role of Caribbean parrotfish on coral reefs is complex: while these fish are important herbivores, as corallivores (consumers of live coral tissue), they selectively graze specific species and colonies of reef-building corals. Though the benefits of parrotfish herbivory for reef resilience and conservation are well documented, the negative consequences of parrotfish grazing for coral reproductive fitness have not been previously determined. We examined recently grazed colonies of Montastraea annularis corals to determine whether grazing was positively associated with coral reproductive effort. We measured gonad number, egg number and size, and proportional reproductive allocation for grazed and intact coral colonies 2–5 days prior to their annual spawning time. We found that parrotfish selectively grazed coral polyps with high total reproductive effort (number of gonads), providing the first evidence that parrotfish selectively target specific tissue areas within a single coral colony. The removal of polyps with high reproductive effort has direct adverse affects on coral fitness, with additional indirect implications for colony growth and survival. We conclude that chronic grazing by parrotfishes has negative fitness consequences for reef-building corals, and by extension, reef ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Avila-Sakar G, Stephenson AG (2006) Effects of the spatial pattern of leaf damage on growth and reproduction: whole plants. Int J Plant Sci 167(5):1021–1028. doi:https://doi.org/10.1086/505609

    Google Scholar 

  • Bruckner AW, Bruckner RJ (1998) Destruction of coral by Sparisoma viride. Coral Reefs 17:350. doi:https://doi.org/10.1007/s003380050138

    Google Scholar 

  • Bruckner AW, Bruckner RJ, Sollins P (2000) Parrotfish predation on live coral: “spot biting” and “focused biting”. Coral Reefs 19:50. doi:https://doi.org/10.1007/s003380050225

    Google Scholar 

  • Bruggemann JH, Begeman J, Bosma EM, Verburg P, Breeman AM (1994a) Foraging by the stoplight parrotfish Sparisoma viride II. Intake and assimilation of food, protein, and energy. Mar Ecol Prog Ser 106:57–71. doi:https://doi.org/10.3354/meps106057

    Google Scholar 

  • Bruggemann JH, van Oppen MJH, Breeman AM (1994b) Foraging by the stoplight parrotfish Sparisoma viride I. Food selection in different, socially determined habitats. Mar Ecol Prog Ser 106:41–55. doi:https://doi.org/10.3354/meps106041

    Google Scholar 

  • Budd AF (1988) Large-scale evolutionary patterns in the reef-coral Montastraea: the role of phenotypic plasticity. In: Choat JH (ed) Proceedings of the 6th international coral reef symosium, Townsville, Australia, pp 393–398

  • Cole AJ, Pratchett MS, Jones GP (2008) Diversity and functional importance of coral-feeding fishes on tropical coral reefs. Fish Fish 9:286–307. doi:https://doi.org/10.1111/j.1467-2979.2008.00290.x

    Google Scholar 

  • Crossman DJ, Choat JH, Clements KD (2005) Nutritional ecology of nominally herbivorous fishes on coral reefs. Mar Ecol Prog Ser 296:129–142. doi:https://doi.org/10.3354/meps296129

    CAS  Google Scholar 

  • Cyr H, Pace ML (1993) Magnitude and patterns of herbivory in aquatic and terrestrial ecosystems. Nature 361:148–150. doi:https://doi.org/10.1038/361148a0

    Google Scholar 

  • Dyer MI (1975) The effects of red-winged blackbirds (Agelaius phoeniceus L.) on biomass production of corn grains (Zea mays L.). J Appl Ecol 12:719–726. doi:https://doi.org/10.2307/2402084

    Google Scholar 

  • Fritz R, Simms E (1992) Plant resistance to herbivores and pathogens: ecology, evolution and genetics. University of Chicago Press, Chicago

    Google Scholar 

  • Frost SH (1977) Miocene to holocene evolution of Caribbean province reef-building corals. In: Taylor DL (ed) Proceedings of the 3rd international coral reef symposium. University of Miami, Miami

  • Gardner TA, Cote IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. Science 301:958–960. doi:https://doi.org/10.1126/science.1086050

    PubMed  CAS  Google Scholar 

  • Garzon-Ferreira J, Reyes-Nivia MC (2001) Incidence of fish predation on stony corals at four atolls of the archipelago of San Andres and Providencia (Colombian Caribbean). Bol Invest Marinas Costeras 30:133–150

    Google Scholar 

  • Goecker ME, Heck KL Jr, Valentine JF (2005) Effects of nitrogen concentrations in turtlegrass Thalassia testudinum on consumption by the bucktooth parrotfish Sparisoma radians. Mar Ecol Prog Ser 286:239–248. doi:https://doi.org/10.3354/meps286239

    Google Scholar 

  • Gygi R (1975) Sparisoma viride (Stoplight parrotfish), a major sediment producer on coral reefs of Bermuda? Ecologae geol Helvetiae 68:327–359

    Google Scholar 

  • Harris P (1974) A possible explanation of plant yield increases following insect damage. Agro-ecosyst 1:219–225. doi:https://doi.org/10.1016/0304-3746(74)90028-6

    Google Scholar 

  • Harrison PL, Wallace CC (1990) Reproduction, dispersal and recruitment of scleractinian corals. In: Dubinsky Z (ed) Ecosystems of the world: coral reefs. Elsevier, Amsterdam

    Google Scholar 

  • Harvell CD (1999) Complex biotic environments, coloniality, and heritable variation for inducible defenses. In: Tollrian R, Harvell CD (eds) The ecology and evolution of inducible defenses. Princeton University Press, Princeton, pp 231–244

    Google Scholar 

  • Henry L, Hart M (2005) Regeneration from injury and resource allocation in sponges and corals—a review. Int Rev Hydrobiol 90:125–158. doi:https://doi.org/10.1002/iroh.200410759

    Google Scholar 

  • Jackson JBC, Buss LW, Cook RE (1985) Population biology and evolution of clonal organisms. Yale University, New Haven

    Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386. doi:https://doi.org/10.2307/3545850

    Google Scholar 

  • Kitamura M, Koyamaa T, Nakanob Y, Uemuraa D (2007) Characterization of a natural inducer of coral larval metamorphosis. J Exp Mar Biol Ecol 340:96–102. doi:https://doi.org/10.1016/j.jembe.2006.08.012

    Google Scholar 

  • Knowlton N, Mate JL, Guzman HM, Rowan R, Jara J (1997) Direct evidence for reproductive isolation among the three species on the Montastraea annularis complex in Central America (Panama and Honduras). Mar Biol (Berl) 127:705–711. doi:https://doi.org/10.1007/s002270050061

    Google Scholar 

  • Kojis BL, Quinn NJ (1981) Aspects of sexual reproduction and larval development in the shallow water hermatypic coral, Goniastrea australensis (Edwards and Haime, 1857). Bull Mar Sci 31:558–573

    Google Scholar 

  • Kojis BL, Quinn NJ (1985) Puberty in Goniastrea favulus. Age or size limited? In: Proceedings of the 5th international coral reef symposium, Tahiti 4: 289–293

  • Krupnick GA, Weis AE (1999) The effect of floral herbivory on male and female reproductive success in Isomeris arborea. Ecology 80:135–149

    Google Scholar 

  • Lasker HR (1985) Prey preferences and browsing pressure of the butterflyfish Chaetodon capistratus on Caribbean gorgonians. Mar Ecol Prog Ser 21:213–220. doi:https://doi.org/10.3354/meps021213

    Google Scholar 

  • Leavitt H, Robertson IC (2006) Petal herbivory by chrysomelid beetles (Phyllotreta sp.) is detrimental to pollination and seed production in Lepidium papilliferum (Brassicaceae). Ecol Entomol 31:657–660. doi:https://doi.org/10.1111/j.1365-2311.2006.00820.x

    Google Scholar 

  • Lesser MP (2004) Experimental biology of coral reef ecosystems. J Exp Mar Biol Ecol 300:217–252. doi:https://doi.org/10.1016/j.jembe.2003.12.027

    Google Scholar 

  • Levitan DR, Fukami H, Jara J, Kline D, McGovern TM, McGhee KE, Swanson CA, Knowlton N (2004) Mechanisms of reproductive isolation aming sympatric broadcast-spawning corals of the Montastrea annularis species complex. Evol Int J Org Evol 58:308–323

    Google Scholar 

  • Louda SM, Potvin MA (1995) Effect of influrorescence-feeding insects on the demography and lifetime fitness of a native plant. Ecology 76:229–245. doi:https://doi.org/10.2307/1940645

    Google Scholar 

  • Lubchenco J, Gaines SD (1981) A unified approach to marine plant-herbivore interactions 1. Populations and communities. Annu Rev Ecol Syst 12:405–437. doi:https://doi.org/10.1146/annurev.es.12.110181.002201

    Google Scholar 

  • Marquis RJ (1984) Leaf herbivores decrease fitness of a tropical plant. Science 226:537–539. doi:https://doi.org/10.1126/science.226.4674.537

    PubMed  CAS  Google Scholar 

  • McCall AC, Irwin RE (2006) Florivory: the intersection of pollination and herbivory. Ecol Lett 9:1351–1365. doi:https://doi.org/10.1111/j.1461-0248.2006.00975.x

    PubMed  Google Scholar 

  • Miller MW, Hay ME (1998) Effects of fish predation and seaweed competition on the survival and growth of corals. Oecologia 113:231–238. doi:https://doi.org/10.1007/s004420050373

    PubMed  Google Scholar 

  • Paige KN, Whitham TG (1987) Overcompensation in response to mammalian herbivory: the advantages of being eaten. Am Nat 129:407–416. doi:https://doi.org/10.1086/284645

    Google Scholar 

  • Paige KN, Williams B, Hickox T (2001) Overcompensation through the paternal component of fitness in Ipomopsis arizonica. Oecologia 128:72–76. doi:https://doi.org/10.1007/s004420100647

    PubMed  Google Scholar 

  • Peterken CJ, Conacher CA (1997) Seed germination and recolonization of Zostera capricorni after grazing by dugongs. Aquat Bot 59:333–340. doi:https://doi.org/10.1016/S0304-3770(97)00061-2

    Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Google Scholar 

  • Richmond RH (1997) Reproduction and recruitment in corals: critical links in the persistence of reefs. In: Birkeland C (ed) Life and death of coral reefs. Chapman and Hall, London, pp 175–197

    Google Scholar 

  • Rinkevich B, Loya Y (1989) Reproduction in regenerating colonies of the coral Stylophora pistilata. In: Spanier E, Steinberger Y, Luria M (eds) Environmental quality and ecosystem stability: vol IV-B. Environmental Quality Israel Society for Ecology and Environmental Quality Sciences. Jerusalem, Israel

    Google Scholar 

  • Rotjan RD (2007) The patterns, causes, and consequences of parrotfish corallivory in Belize. Doctoral dissertation. Biology, Ph.D. Dissertation, Medford, MA

  • Rotjan RD, Dimond JL, Thornhill DJ, Leichter JJ, Helmuth BST, Kemp DW, Lewis SM (2006) Chronic parrotfish grazing impedes coral recovery after bleaching. Coral Reefs 25:361–368. doi:https://doi.org/10.1007/s00338-006-0120-y

    Google Scholar 

  • Rotjan RD, Lewis SM (2005) Selective predation by parrotfishes on the reef coral Porites astreoides. Mar Ecol Prog Ser 305:193–201. doi:https://doi.org/10.3354/meps305193

    CAS  Google Scholar 

  • Rotjan RD, Lewis SM (2006) Parrotfish abundance and corallivory on a Belizean coral reef. J Exp Mar Biol Ecol 335:292–301. doi:https://doi.org/10.1016/j.jembe.2006.03.015

    Google Scholar 

  • Rotjan RD, Lewis SM (2008) Impact of coral predators on tropical reefs. Mar Ecol Prog Ser 367:73–91. doi:https://doi.org/10.3354/meps07531

    Google Scholar 

  • Rüetzler K, Macintyre IG (1982) The Atlantic barrier reef ecosystem at Carrie Bow Cay, Belize, I: structure and communities. Smithsonian Institution Press, Washington

    Google Scholar 

  • Sanchez JA, Alvarado EM, Gil MF, Charry H, Arenas OL, Chasqui LH, Garcia RP (1999) Synchronous mass spawning of Montastraea annularis (Ellis & Solander) and Montastraea faveolata (Ellis & Solander) (Faviidae: Scleractinia) at Rosario Islands, Caribbean coast of Colombia. Bull Mar Sci 65:873–879

    Google Scholar 

  • Sanchez JA, Gil MF, Chasqui LH, Alvarado EM (2004) Grazing dynamics on a Caribbean reef-building coral. Coral Reefs 23:578–583

    Google Scholar 

  • Shearer TL, Coffroth MA (2006) Genetic identification of Caribbean scleractinian coral recruits at the Flower Garden Banks and the Florida Keys. Mar Ecol Prog Ser 306:133–142. doi:https://doi.org/10.3354/meps306133

    CAS  Google Scholar 

  • Stephenson AG (1980) Fruit set, herbivory, fruit reduction, and the fruiting strategy of Catalpa speciosa (Bignoniaceae). Ecology 61:57–64. doi:https://doi.org/10.2307/1937155

    Google Scholar 

  • Szmant-Froelich AM (1985) The effect of colony size on the reproductive ability of the Caribbean coral Montastrea annularis. Proc 5th Int Coral Reef Sym, Tahiti 4:295–300

    Google Scholar 

  • Szmant AM (1986) Reproductive ecology of Caribbean reef corals. Coral Reefs 5:43–54. doi:https://doi.org/10.1007/BF00302170

    Google Scholar 

  • Szmant AM (1991) Sexual reproduction by the Caribbean reef corals Montastrea annularis and M. cavernosa. Mar Ecol Prog Ser 74:13–25. doi:https://doi.org/10.3354/meps074013

    Google Scholar 

  • Tobler MA, Van Zandt PA, Hasenstein KH, Mopper S (2006) Growth and reproduction of a clonal plant in response to salinity and florivory. Wetlands 26:803–812. doi:https://doi.org/10.1672/0277-5212(2006)26[803:GAROAC]2.0.CO;2

    Google Scholar 

  • Van Veghel MLJ (1994) Reproductive characteristics of the polymorphic Caribbean reef building coral Montastrea annularis I. Gametogenesis and spawning behavior. Mar Ecol Prog Ser 109:209–219. doi:https://doi.org/10.3354/meps109209

    Google Scholar 

  • Van Veghel MLJ, Bak RPM (1994) Reproductive characteristics of the polymorphic Caribbean reef building coral Montastrea annularis III. Reproduction in damaged and regenerating colonies. Mar Ecol Prog Ser 109:229–233. doi:https://doi.org/10.3354/meps109229

    Google Scholar 

  • Van Veghel MLJ, Kahmann MEH (1994) Reproductive characteristics of the polymorphic Caribbean reef building coral Montastrea annularis II. Fecundity and colony structure. Mar Ecol Prog Ser 109:221–227. doi:https://doi.org/10.3354/meps109221

    Google Scholar 

  • Villinski JT (2003) Depth-independent reproductive characteristics for the Caribbean reef-building coral Montastrea faveolata. Mar Biol (Berl) 142:1043–1053

    Google Scholar 

  • Wilson SK, Graham NAJ, Pratchett MS, Jones GP, Polunin NVC (2006) Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient? Glob Chang Biol 12:2220–2234. doi:https://doi.org/10.1111/j.1365-2486.2006.01252.x

    Google Scholar 

  • Wisdom CS, Crawford CS, Aldon EF (1989) Influence of insect herbivory on photosynthetic rate and reproduction in Gutierrezia species. J Ecol 77:685–692. doi:https://doi.org/10.2307/2260978

    Google Scholar 

Download references

Acknowledgments

This is Caribbean Coral Reef Ecosystems (CCRE) contribution number 792, supported in part by the Hunterdon Oceanographic Research Fund and the Smithsonian Institution. We thank A. Steinbrenner for his patience and careful help in measuring egg size using our MATLAB program, and we thank J. Chabot for his help in the design and coding of our egg area measurement program. We are grateful to A. Szmant, E. Peters and G. Ellmore for their generous help in developing our methods. We thank S. Arnold and J. Brown for their diving assistance, and we thank R. Aronson, T. Fedina, A. South, K. Levan, and J. Dimond for helpful conversations about these results. The experiments performed here comply with the current laws of Belize and the United States, and corals samples were collected under CITES permit number 1420, in collaboration with the Smithsonian Caribbean Coral Reef Ecosystems Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randi D. Rotjan.

Additional information

Communicated by M. Byrne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rotjan, R.D., Lewis, S.M. Predators selectively graze reproductive structures in a clonal marine organism. Mar Biol 156, 569–577 (2009). https://doi.org/10.1007/s00227-008-1108-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-008-1108-7

Keywords

Navigation