Skip to main content

Redwood of the reef: growth and age of the giant barrel sponge Xestospongia muta in the Florida Keys

Abstract

The growth of animals in most taxa has long been well described, but the phylum Porifera has remained a notable exception. The giant barrel sponge Xestospongia muta dominates Caribbean coral reef communities, where it is an important spatial competitor, increases habitat complexity, and filters seawater. It has been called the ‘redwood of the reef’ because of its size (often >1 m height and diameter) and presumed long life, but very little is known about its demography. Since 1997, we have established and monitored 12 permanent 16 m diameter circular transects on the reef slope off Key Largo, Florida, to study this important species. Over a 4.5-year interval, we measured the volume of 104 tagged sponges using digital images to determine growth rates of X. muta. Five models were fit to the cubed root of initial and final volume estimates to determine which best described growth. Additional measurements of 33 sponges were taken over 6-month intervals to examine the relationship between the spongocoel, or inner-osculum space, and sponge size, and to examine short-term growth dynamics. Sponge volumes ranged from 24.05 to 80,281.67 cm3. Growth was variable, and specific growth rates decreased with increasing sponge size. The mean specific growth rate was 0.52 ± 0.65 year−1, but sponges grew as fast or slow as 404 or 2% year−1. Negative growth rates occurred over short temporal scales and growth varied seasonally, significantly faster during the summer. No differences in specific growth rate were found between transects at three different depths (15, 20, 30 m) or at two different reef sites. Spongocoel volume was positively allometric with increasing sponge size and scaling between the vertical and horizontal dimensions of the sponge indicated that morphology changes from a frustum of a cone to cylindrical as volume increases. Growth of X. muta was best described by the general von Bertalanffy and Tanaka growth curves. The largest sponge within our transects (1.23 × 0.98 m height × diameter) was estimated to be 127 years old. Although age extrapolations for very large sponges are subject to more error, the largest sponges on Caribbean reefs may be in excess of 2,300 years, placing X. muta among the longest-lived animals on earth.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Proceedings of the 2nd international symposium on information theory. Akademiai Kiado, Budapest, pp 267–281

  • Ayling AL (1983) Growth and regeneration rates in thinly encrusting Demospongiae from temperate waters. Biol Bull 165:343–352. doi:10.2307/1541200

    Article  Google Scholar 

  • Barthel D (1986) On the ecophysiology of the sponge Halichondria panacea in Kiel Bight. I. Substrate specificity, growth and reproduction. Mar Ecol Prog Ser 32:291–298. doi:10.3354/meps032291

    Article  Google Scholar 

  • Baskerville GL (1971) Use of logarithmic regression in the estimation of plant biomass. Can J Res 2:49–5. doi:10.1139/x72-009

    Article  Google Scholar 

  • von Bertalanffy L (1938) A quantitative theory of organic growth (inquires on growth laws II). Hum Biol 10:181–213

    Google Scholar 

  • Beverton RJH, Holt SJ (1957) On the dynamics of exploited fish populations. Fisheries Investigations of the Ministry of Agriculture and Fisheries, Food in Great Britain (2. Sea Fish), 19. Fascimile reprint 1993, Fish and Fisheries Series, Number 11. Chapman and Hall, London

    Google Scholar 

  • Blueweiss L, Fox H, Kudzma V, Nakashima D, Peters R, Sams S (1978) Relationships between body size and some life history parameters. Oecologia 37:257–272. doi:10.1007/BF00344996

    CAS  Article  Google Scholar 

  • Brey T (2001) Population dynamics in benthic invertebrates. A virtual handbook. Version 01.2. Alfred Wegener Institute for Polar and Marine Research, Germany. http://www.awi-bremerhaven.de/Benthic/Ecosystem/FoodWeb/Handbook/main.html. Accessed 26 March 2007

  • Buettner H (1996) Rubble mounds of sand tilefish Malacanthus plumieri (Bloch, 1787) and associated fishes in Colombia. Bull Mar Sci 58:248–260

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretical approach. Springer, New York

    Google Scholar 

  • Chanas B, Pawlik JR (1997) Variability in the chemical defense of the Caribbean reef sponge Xestospongia muta. In: Lessios HA, Macintyre IG (eds) Proceedings of the 8th international coral reef symposium, vol 2. Smithsonian Tropical Research Institute, Balboa, pp 1363–1368

  • Chiappone M, White A, Swanson DW, Miller SL (2002) Occurrence and biological impacts of fishing gear and other marine debris in the Florida Keys. Mar Pollut Bull 44:597–604. doi:10.1016/S0025-326X(01)00290-9

    CAS  Article  Google Scholar 

  • Chiappone M, Dienes H, Swanson DW, Miller SL (2005) Impacts of lost fishing gear on coral reef sessile invertebrates in the Florida Keys National Marine Sanctuary. Biol Conserv 121:221–230. doi:10.1016/j.biocon.2004.04.023

    Article  Google Scholar 

  • Cowart JD, Henkel TP, McMurray SE, Pawlik JR (2006) Sponge orange band (SOB): a pathogenic-like condition of the giant barrel sponge Xestospongia muta. Coral Reefs 25:513. doi:10.1007/s00338-006-0149-y

    Article  Google Scholar 

  • Dayton PK, Robilliard GA, Paine RT, Dayton LB (1974) Biological accommodation in the benthic community at McMurdo Sound, Antarctica. Ecol Monogr 44:105–128. doi:10.2307/1942321

    Article  Google Scholar 

  • Diaz MC, Rützler K (2001) Sponges: an essential component of Caribbean coral reefs. Bull Mar Sci 69:535–546

    Google Scholar 

  • Diaz MC, Ward BB (1997) Sponge-mediated nitrification in tropical benthic communities. Mar Ecol Prog Ser 156:97–107. doi:10.3354/meps156097

    CAS  Article  Google Scholar 

  • Duckworth AR, Battershill CN (2001) Population dynamics and chemical ecology of New Zealand Demospongiae Latrunculia sp. nov. and Polymastia croceus (Poecilosclerida: Latrunculiidae: Polymastiidae). N Z J Mar Freshw Res 35:935–949

    Article  Google Scholar 

  • Duffy JE (1992) Host use patterns and demography in a guild of tropical sponge-dwelling shrimps. Mar Ecol Prog Ser 90:127–138. doi:10.3354/meps090127

    Article  Google Scholar 

  • Ebert TA (1980) Estimating parameters in a flexible growth equation, the Richards function. Can J Fish Aquat Sci 37:687–692. doi:10.1139/f80-086

    Article  Google Scholar 

  • Ebert TA (1999) Plant and animal populations: methods in demography. Academic Press, San Diego

    Google Scholar 

  • Ebert TA, Dixon JD, Schroeter SC, Kalvass PE, Richmond NT, Bradbury WA et al (1999) Growth and mortality of red sea urchins Strongylocentrotus franciscanus across a latitudinal gradient. Mar Ecol Prog Ser 190:189–209. doi:10.3354/meps190189

    Article  Google Scholar 

  • Elvin DW (1976) Seasonal growth and reproduction of an intertidal sponge Haliclona permollis (Bowerbank). Biol Bull 151:108–125. doi:10.2307/1540709

    Article  Google Scholar 

  • Engel S, Pawlik JR (2005) Interactions among Florida sponges: I. Reef habitats. Mar Ecol Prog Ser 303:133–144. doi:10.3354/meps303133

    Article  Google Scholar 

  • Fell PE, Lewandrowski KB (1981) Population dynamics of the estuarine sponge, Halichondria sp., within a New England eelgrass community. J Exp Mar Biol Ecol 55:49–63. doi:10.1016/0022-0981(81)90092-7

    Article  Google Scholar 

  • Fromont J, Bergquist PR (1994) Reproductive biology of three sponge species of the genus Xestospongia (Porifera: Demospongiae: Petrosida) from the Great Barrier Reef. Coral Reefs 13:119–126. doi:10.1007/BF00300772

    Article  Google Scholar 

  • Frost TM, Williamson CE (1980) In situ determination of the effect of symbiotic algae on the growth of the fresh water sponge Spongilla lacustris. Ecology 61:1361–1370. doi:10.2307/1939045

    Article  Google Scholar 

  • Gammill ER (1997) Identification of coral reef sponges. Providence Marine Publishing, Inc, Tampa

    Google Scholar 

  • Garrabou J, Zabala M (2001) Growth dynamics in four Mediterranean demosponges. Estuar Coast Shelf Sci 52:293–303. doi:10.1006/ecss.2000.0699

    Article  Google Scholar 

  • Gompertz B (1825) On the nature of the function expressive of human mortality, and on a new mode of determining the value of life contingencies. Philos Trans R Soc Lond Ser B 115:513–585

    Article  Google Scholar 

  • Goreau TJ, Hayes RL, Clark JW, Basla DJ, Robertson CN (1993) Elevated sea surface temperatures correlate with Caribbean coral reef bleaching. In: Geyer RA (ed) A global warming forum: scientific, economic and legal overview. CRC Press, Boca Raton, pp 225–255

    Google Scholar 

  • Henkel TP, Pawlik JR (2005) Habitat use by sponge-dwelling brittlestars. Mar Biol (Berl) 146:301–313. doi:10.1007/s00227-004-1448-x

    Article  Google Scholar 

  • Henry L-A, Hart M (2005) Regeneration from injury and resource allocation in sponges and corals—a review. Int Rev Hydrobiol 90:125–158. doi:10.1002/iroh.200410759

    Article  Google Scholar 

  • Hill MS (1996) Symbiotic zooxanthellae enhance boring and growth rates of the tropical sponge Anthosigmella varians forma varians. Mar Biol (Berl) 125:649–654. doi:10.1007/BF00349246

    Article  Google Scholar 

  • Hoppe WF (1988) Growth, regeneration and predation in three species of large coral reef sponges. Mar Ecol Prog Ser 50:117–125. doi:10.3354/meps050117

    Article  Google Scholar 

  • HRIA (2006) Coast Redwood. Humboldt Redwoods Interpretive Association. http://www.humboldtredwoods.org/. Accessed 20 December 2007

  • Hudson JH, Anderson J, Franklin EC, Schittone J, Stratton A (2007) M/V Wellwood coral reef restoration monitoring report, monitoring events 2004–2006. Florida Keys National Marine Sanctuary Monroe County, Florida. Marine Sanctuaries Conservation Series NMSP-07-02. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Sanctuary Program, Silver Spring, 50pp

  • Humann P (1992) Reef creature identification. New World Pub, Jacksonville

    Google Scholar 

  • Jaap WC (2000) Coral reef restoration. Ecol Eng 15:345–364. doi:10.1016/S0925-8574(00)00085-9

    Article  Google Scholar 

  • Johnson MF (1979) Recruitment, growth, mortality and seasonal variations in the calcareous sponge Clathrina coriacea (Montagu) and C. blanca (Miklucho-Maclay) from Santa Catalina Island, California. In: Lévi C, Boury-Esnault N (eds) Biologie des Spongiaires. Colloques Internationaux du CNRS 291, Paris, pp 325–334

    Google Scholar 

  • Leichter JJ, Miller SL (1999) Predicting high frequency upwelling: spatial and temporal patterns of temperature anomalies on a Florida coral reef. Cont Shelf Res 19:911–928. doi:10.1016/S0278-4343(99)00004-7

    Article  Google Scholar 

  • Lesser MP (2006) Benthic-pelagic coupling on coral reefs: feeding and growth of Caribbean sponges. J Exp Mar Biol Ecol 328:277–288. doi:10.1016/j.jembe.2005.07.010

    Article  Google Scholar 

  • Leys SP, Lauzon NRJ (1998) Hexactinellid sponge ecology: growth rates and seasonality in deep water sponges. J Exp Mar Biol Ecol 230:111–129. doi:10.1016/S0022-0981(98)00088-4

    Article  Google Scholar 

  • Lindquist N, Hay ME (1996) Palatability and chemical defense of marine invertebrate larvae. Ecol Monogr 66:431–450. doi:10.2307/2963489

    Article  Google Scholar 

  • López-Legentil S, Song B, McMurray SE, Pawlik JR (2008) Bleaching and stress in coral reef ecosystems: hsp70 expression by the giant barrel sponge Xestospongia muta. Mol Ecol 17:1840–1849

    Article  Google Scholar 

  • McArdle BH (1988) The structural relationship: regression in biology. Can J Zool 66:2329–2339

    Article  Google Scholar 

  • McMurray SE, Pawlik JR (2008) A novel technique for the reattachment of large coral reef sponges. Restoration Ecol (in press)

  • Nagelkerken I, Aerts L, Pors L (2000) Barrel sponge bows out. Reef Encounter 28:14–15

    Google Scholar 

  • NOAA (1997) NOAA gears up for reef restoration at Looe Key: university agrees to $3.9 million settlement for damage in Florida Keys Sanctuary. http://www.publicaffairs.noaa.gov/pr97/nov97/noaa97-r423.html

  • Pauly D (1981) The relationships between gill surface area and growth performance in fish: a generalization of von Bertalanffy’s theory of growth. Meeresforsch 28:251–282

    Google Scholar 

  • Peters RH (1983) The ecological implications of body size. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Pile AJ, Patterson MR, Savarese M, Chernykh VI, Fialkov VA (1997) Trophic effects of sponge feeding within Lake Baikal’s littoral zone. 2. Sponge abundance, diet, feeding efficiency, and carbon flux. Limnol Oceanogr 42:178–184

    CAS  Article  Google Scholar 

  • Precht WF (2006) Coral reef restoration handbook. CRC Press, Boca Raton

    Book  Google Scholar 

  • Reiswig HM (1971) In situ pumping activities of tropical Demospongiae. Mar Biol (Berl) 9:38–50. doi:10.1007/BF00348816

    Article  Google Scholar 

  • Reiswig HM (1973) Population dynamics of three Jamaican Demospongiae. Bull Mar Sci 23:191–226

    Google Scholar 

  • Reiswig HM (1975) The aquiferous systems of three marine Demospongiae. J Morphol 145:493–502. doi:10.1002/jmor.1051450407

    Article  Google Scholar 

  • Richards FJ (1959) A flexible growth function for empirical use. J Exp Bot 10:290–300. doi:10.1093/jxb/10.2.290

    Article  Google Scholar 

  • Ricker WE (1973) Linear regressions in fishery research. J Fish Res Board Can 30:409–434

    Article  Google Scholar 

  • Ritson-Williams R, Becerro MA, Paul VJ (2005) Spawning of the giant barrel sponge Xestospongia muta in Belize. Coral Reefs 24:160. doi:10.1007/s00338-004-0460-4

    Article  Google Scholar 

  • Rogers-Bennett L, Rogers DW, Bennett WA, Ebert TA (2003) Modeling red sea urchin (Strongylocentrotus franciscanus) growth using six growth functions. Fish Bull (Wash DC) 101:614–626

    Google Scholar 

  • Rützler K (1985) Associations between Caribbean sponges and photosynthetic organisms. In: Rützler K (ed) New perspectives in sponge biology. Smithsonian Institution Press, Washington DC, pp 455–466

    Google Scholar 

  • Schmahl GP (1999) Recovery and growth of the giant barrel sponge (Xestospongia muta) following physical injury from a vessel grounding in the Florida Keys. Mem Queensl Mus 44:532

    Google Scholar 

  • Schmidt-Nielson K (1974) Scaling in biology: the consequences of size. J Exp Zool 194:287–307. doi:10.1002/jez.1401940120

    Article  Google Scholar 

  • Schone BR, Fiebig J, Pfeiffer M, Gleb R, Hickson J, Johnson A et al (2005) Climate records from a bivalved Methuselah (Arctica islandica, Mollusca; Iceland). Palaeogeogr Palaeoclimatol Palaeoecol 228:130–14. doi:10.1016/j.palaeo.2005.03.049

    Article  Google Scholar 

  • Sebens KP (1987) The ecology of indeterminate growth in animals. Annu Rev Ecol Syst 18:371–407. doi:10.1146/annurev.es.18.110187.002103

    Article  Google Scholar 

  • Simpson TL (1984) The cell biology of sponges. Springer, New York

    Book  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. W. H. Freeman and Co, New York

    Google Scholar 

  • Sprugel D (1983) Correcting for bias in log-transformed allometric equations. Ecology 64:209–210. doi:10.2307/1937343

    Article  Google Scholar 

  • Suchanek TH, Carpenter RC, Witman JD, Harvell CD (1985) Sponges as important space competitors in deep Caribbean coral reef communities. In: Reaka ML (ed) The ecology of deep and shallow coral reefs, symposia series for undersea research 3(1), NOAA/NURP, Rockville, pp 55–59

  • Tanaka K (2002) Growth dynamics and mortality of the intertidal encrusting sponge Halichondria okadai (Demospongiae, Halichondrida). Mar Biol (Berl) 140:383–389. doi:10.1007/s002270100703

    Article  Google Scholar 

  • Tanaka M (1982) A new growth curve which expresses infinitive increase. Pub Amakusa Mar Biol Lab Kyushu Univ 6:167–177

    Google Scholar 

  • Tanaka M (1988) Eco-physiological meaning of parameters of ALOG growth curve. Pub Amakusa Mar Biol Lab Kyushu Univ 9:103–106

    CAS  Google Scholar 

  • Targett NM, Schmahl GP (1984) Chemical ecology and distribution of sponges in the Salt River Canyon, St. Croix, U.S.V.I. NOAA Tech Mem OAR NURP-1

  • Thacker R (2005) Impacts of shading on sponge-cyanobacteria symbioses: a comparison between host-specific and generalist associations. Integr Comp Biol 45:369–376. doi:10.1093/icb/45.2.369

    Article  Google Scholar 

  • Trussell GC (1997) Phenotypic plasticity in the foot size of an intertidal snail. Ecology 8:1033–1048

    Article  Google Scholar 

  • Trussell GC, Lesser MP, Patterson MR, Genovese SJ (2006) Depth-specific differences in growth of the reef sponge Callyspongia vaginalis: role of bottom-up effects. Mar Ecol Prog Ser 323:149–158. doi:10.3354/meps323149

    Article  Google Scholar 

  • Turon X, Tarjuelo I, Uriz MJ (1998) Growth dynamics and mortality of the encrusting sponge Crambe crambe (Poecilosclerida) in contrasting habitats: correlation with population structure and investment in defence. Funct Ecol 12:631–639. doi:10.1046/j.1365-2435.1998.00225.x

    Article  Google Scholar 

  • Walford LA (1946) A new graphic method of describing the growth of animals. Biol Bull 90:141–147. doi:10.2307/1538217

    CAS  Article  Google Scholar 

  • Walters KD, Pawlik JR (2005) Is there a trade off between wound-healing and chemical defenses among Caribbean reef sponges? Integr Comp Biol 45:352–358. doi:10.1093/icb/45.2.352

    Article  Google Scholar 

  • Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting methods for allometry. Biol Rev Camb Philos Soc 81:259–291. doi:10.1017/S1464793106007007

    Article  Google Scholar 

  • Webster NS (2007) Sponge disease: a global threat? Environ Microbiol 9:1363–1375. doi:10.1111/j.1462-2920.2007.01303.x

    CAS  Article  Google Scholar 

  • Werner EE, Gilliam JF (1984) The ontogenetic niche and species interactions in size-structured populations. Annu Rev Ecol Syst 15:393–425. doi:10.1146/annurev.es.15.110184.002141

    Article  Google Scholar 

  • Wilkinson CR, Cheshire AC (1988) Growth rate of Jamaican coral reef sponges after Hurricane Allen. Biol Bull 175:175–179. doi:10.2307/1541905

    Article  Google Scholar 

  • Winsor CP (1932) The Gompertz curve as a new growth curve. Proc Natl Acad Sci USA 18:1–8. doi:10.1073/pnas.18.1.1

    CAS  Article  Google Scholar 

  • Wulff JL (1985) Patterns and processes of size change in Caribbean Demosponges of branching morphology. In: Rützler K (ed) New perspectives in sponge biology. Smithsonian Institution Press, Washington, pp 425–435

    Google Scholar 

  • Zea S (1993) Cover of sponges and other sessile organisms in rocky and coral reef habitats of Santa Marta, Colombian Caribbean Sea. Caribb J Sci 29:75–78

    Google Scholar 

Download references

Acknowledgments

This study was funded by grants to JRP from the National Undersea Research Program at UNCW (NOAA NA96RU-0260) and from the National Science Foundation, Biological Oceanography Program (OCE-0095724, 0550468). Particular thanks to Timothy Henkel, who designed the database for storing and retrieving photographs and the staff of NOAA/NURC in Key Largo, Florida, for logistical support. Assistance in the field was provided by Alan Bright, Jonathan Cowart, Sebastian Engel, Nick Foster, James Gavin, Timothy Henkel, Adam Jones, Sarah Kelly, Wai Leong, Susanna López-Legentil, Tse-Lynn Loh, Greg McFall, Shobu Odate, Will O’Neal, David Swearingen, Kyle Walters, and Kristen Whalan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Pawlik.

Additional information

Communicated by A. McLachlan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

McMurray, S.E., Blum, J.E. & Pawlik, J.R. Redwood of the reef: growth and age of the giant barrel sponge Xestospongia muta in the Florida Keys. Mar Biol 155, 159–171 (2008). https://doi.org/10.1007/s00227-008-1014-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-008-1014-z

Keywords

  • Sponge
  • Coral Reef
  • Specific Growth Rate
  • Base Diameter
  • Digital Image Volume