Bacterial communities of the marine sponges Hymeniacidon heliophila and Polymastia janeirensis and their environment in Rio de Janeiro, Brazil

Abstract

In this study we performed a survey of the bacterial communities associated with the Western Atlantic demosponges Hymeniacidon heliophila and Polymastia janeirensis, based on 16S rRNA sequencing and transmission electron microscopy (TEM). We compared diversity and composition of the sponge-associated bacteria to those of environmental bacteria, represented by free-living bacterioplankton and by bacteria attached to organic particulate matter in superficial sediments. Partial bacterial 16S rRNA sequences from seawater, sediment, and sponges were retrieved by PCR, cloning, and sequencing. Sequences were subjected to rarefaction analyses, phylogenetic tree construction, and LIBSHUFF quantitative statistics to verify coverage and similarity between libraries. Community structure of the free-living bacterioplankton was phylogenetically different from that of the sponge-associated bacterial assemblages. On the other hand, some sediment-attached bacteria were also found in the sponge bacterial community, indicating that sponges may incorporate bacteria together with sediment particles. Rare and few prokaryotic morphotypes were found in TEM analyses of sponge mesohyl matrix of both species. Molecular data indicate that bacterial richness and diversity decreases from bacterioplankton, to particulate organic sediment, and to H. heliophila and P. janeirensis. Sponges from Rio de Janeiro harbor a pool of novel and exclusive sponge-associated bacterial taxa. Sponge-associated bacterial communities are composed of both taxons shared by many sponge groups and by species-specific bacteria.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Althoff K, Schütt C, Steffen R, Batel R, Müller WEG (1998) Evidence for a symbiosis between bacteria of the genus Rhodobacter and the marine sponge Halichondria panicea: harbor also for putatively toxic bacteria? Mar Biol (Berl) 130:529–536. doi:10.1007/s002270050273

    Article  Google Scholar 

  2. Andrade L, Gonzalez AM, Araújo FV, Paranhos R (2003) Flow cytometry assessment of bacterioplankton in tropical marine environments. J Microbiol Methods 55:841–850. doi:10.1016/j.mimet.2003.08.002

    CAS  Article  Google Scholar 

  3. Bergquist PR (1978) Sponges. Hutchinson, London

    Google Scholar 

  4. Boury-Esnault N (1973) Résultats Scientifiques des Campagnes de la “Calypso”. Campagne de la “Calypso” au large des côtes atlantiques de l’Amérique du Sud (1961–1962). I. 29. Spongiaires. Ann Inst Oceanograph 49(Suppl. 10):263–295

    Google Scholar 

  5. Boury-Esnault N, Hajdu E, Klautau M, Custodio M, Borojevic R (1994) The value of cytological criteria in distinguishing sponges at the species level: the example of the genus Polymastia. Can J Zool 72(5):795–804

    Article  Google Scholar 

  6. Cerrano C, Calcinai B, Camillo CG, di Valisano L, Bavestrello G (2007) How and why do sponges incorporate foreign material? Strategies in Porifera. In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G (eds) Porifera research: biodiversity, innovation, sustainability. série livros 28. Museu Nacional, Rio de Janeiro, pp 239–246

    Google Scholar 

  7. Cervino JM, Winiarski-Cervino K, Polson SW, Goreau T, Smith GW (2006) Identification of bacteria associated with a disease affecting the marine sponge Lanthella basta in New Britain, Papua New Guinea. Mar Ecol Prog Ser 324:139–150. doi:10.3354/meps324139

    CAS  Article  Google Scholar 

  8. Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA et al (2003) The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443. doi:10.1093/nar/gkg039

    CAS  Article  Google Scholar 

  9. Edwing B, Hillier L, Wendl M, Green P (1998) Basecalling of automated sequencer traces using phred I accuracy assessment. Genet Res 8:175–185

    Article  Google Scholar 

  10. Fieseler L, Horn M, Wagner M, Hentschel U (2004) Discovery of the novel candidate phylum Poribacteria in marine sponges. Appl Environ Microbiol 70:3724–3732. doi:10.1128/AEM.70.6.3724-3732.2004

    CAS  Article  Google Scholar 

  11. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome C oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    CAS  PubMed  Google Scholar 

  12. Gonzalez AM, Paranhos R, Andrade L, Valentin J (2000) Bacterial production in Guanabara Bay (Rio de Janeiro, Brazil) evaluated by 3H-leucine incorporation. Braz Arch Biol Technol 43:493–500. doi:10.1590/S1516-89132000000500008

    Article  Google Scholar 

  13. Grasshoff K, Kremling K, Erhardt M (1999) Methods of seawater analysis, 3rd edn. Wiley-VCH Verlag, Berlin, p 600

  14. KL Heck Jr, Gvan Belle, Simberloff D (1975) Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56:1459–1461. doi:10.2307/1934716

    Article  Google Scholar 

  15. Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J et al (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440. doi:10.1128/AEM.68.9.4431-4440.2002

    CAS  Article  Google Scholar 

  16. Hill M, Hill A, Lopez N, Harriott O (2006) Sponge-specific bacterial symbionts in the Caribbean sponge, Chondrilla nucula (Demospongiae, Chondrosida). Mar Biol (Berl) 148(6):1221–1230. doi:10.1007/s00227-005-0164-5

    Article  Google Scholar 

  17. Hooper JNA, van Soest RWM (2002) Systema Porifera: a guide to the classification of sponges. Kluwer, New York

    Google Scholar 

  18. Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genet Res 9:868–877. doi:10.1101/gr.9.9.868

    CAS  Article  Google Scholar 

  19. Hurlbert SH (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577–586. doi:10.2307/1934145

    Article  Google Scholar 

  20. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. doi:10.1007/BF01731581

    CAS  Article  Google Scholar 

  21. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245. doi:10.1093/bioinformatics/17.12.1244

    CAS  Article  Google Scholar 

  22. Lafi FF, Garson MJ, Fuerst JA (2005) Culturable bacterial symbionts isolated from two distinct sponge species (Pseudoceratina clavata and Rhabdastrella globostellata) from the Great Barrier Reef display similar phylogenetic diversity. Microb Ecol 50:213–220. doi:10.1007/s00248-004-0202-8

    CAS  Article  Google Scholar 

  23. Lane DJ, Pace B, Olsen GJ, Stahl D, Sogin M, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 82:6955–6959. doi:10.1073/pnas.82.20.6955

    CAS  Article  Google Scholar 

  24. Muricy G, Hajdu E (2006) Porifera Brasilis. Guia de identificação das esponjas mais comuns do Sudeste do Brasil. Série Livros 17, Museu Nacional, Rio de Janeiro

  25. Muricy G, Bézac C, Gallissian MF, Boury-Esnault N (1999) Anatomy, cytology and endobiont bacteria of four Mediterranean species of Plakina (Demospongiae: Homoscleromorpha). J Nat Hist 33:159–176. doi:10.1080/002229399300353

    Article  Google Scholar 

  26. Muscholl-Silberhorn A, Thiel V, Imhoff JF (2007) Abundance and bioactivity of cultured sponge-associated bacteria from the Mediterranean Sea. Microb Ecol 55(1):94–106. doi:10.1007/s00248-007-9255-9 Online first

    Article  Google Scholar 

  27. Paranhos R, Pereira AP, Mayr LM (1998) Diel variability of water quality in a tropical polluted bay. Environ Monit Assess 50:131–141. doi:10.1023/A:1005855914215

    CAS  Article  Google Scholar 

  28. Parker GH (1910) The reactions of sponges, with a consideration of the origin of the nervous system. J Exp Zool 8:765–805

    Google Scholar 

  29. Preston CM, Wu KY, Molinski TF, DeLong EF (1996) A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proc Natl Acad Sci USA 93:6241–6246. doi:10.1073/pnas.93.13.6241

    CAS  Article  Google Scholar 

  30. Reiswig HM (1971) Particle feeding in natural populations of three marine demosponges. Biol Bull 141:568–591. doi:10.2307/1540270

    Article  Google Scholar 

  31. Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  32. Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506. doi:10.1128/AEM.71.3.1501-1506.2005

    CAS  Article  Google Scholar 

  33. Schloss PD, Larget BR, Handelsman J (2004) Integration of microbial ecology and statistics: a test to compare gene libraries. Appl Environ Microbiol 70:5485–5492. doi:10.1128/AEM.70.9.5485-5492.2004

    CAS  Article  Google Scholar 

  34. Schmitt S, Weisz JB, Lindquist N, Hentschel U (2007) Vertical transmission of a phylogenetically complex microbial consortium in the viviparous sponge Ircinia felix. Appl Environ Microbiol 73:2067–2078. doi:10.1128/AEM.01944-06

    CAS  Article  Google Scholar 

  35. Sennet SH, Wright AE, Pomponi SA, Armstrong JE, Willoughby R, Bingham BL (1990) Cellular localization and ecological role of secondary metabolites from the sponge Hymeniacidon heliophila. Int Soc Chem Ecol Annu Meet 1990:8–15

    Google Scholar 

  36. Sharp KH, Eam B, Faulkner J, Haygood MG (2007) Vertical transmission of diverse microbes in the tropical sponge Corticium sp. Appl Environ Microbiol 73:622–629. doi:10.1128/AEM.01493-06

    CAS  Article  Google Scholar 

  37. Singleton DR, Furlong MA, Rathbun SL, Whitman WB (2001) Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microbiol 67:4374–4376. doi:10.1128/AEM.67.9.4374-4376.2001

    CAS  Article  Google Scholar 

  38. Smith DC, Azam F (1989) A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Mar Microb Food Webs 6:107–114

    Google Scholar 

  39. Somerville CC, Knight IT, Straube WL, Colwell RR (1989) Simple rapid method for direct isolation of nucleic acids from aquatic environments. Appl Environ Microbiol 55:548–554

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71(2):295–347. doi:10.1128/MMBR.00040-06

    CAS  Article  Google Scholar 

  41. Thiel V, Leininger S, Schmaljohann R, Brümmer F, Imhoff JF (2007a) Sponge-specific bacterial associations of the Mediterranean sponge Chondrilla nucula (Demospongiae, Tetractinomorpha). Microb Ecol 54(1):101–111. doi:10.1007/s00248-006-9177-y

    Article  Google Scholar 

  42. Thiel V, Neulinger SC, Staufenberger T, Schmaljohann R, Imhoff JF (2007b) Spatial distribution of sponge-associated bacteria in the Mediterranean sponge Tethya aurantium. FEMS Microbiol Ecol 59(1):47–63. doi:10.1111/j.1574-6941.2006.00217.x

    CAS  Article  Google Scholar 

  43. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882. doi:10.1093/nar/25.24.4876

    Article  Google Scholar 

  44. Urbach E, Kevin LV, Young L, Morse A, Larson GL, Giovannoni SJ (2001) Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake. Limnol Oceanogr 46:557–572

    CAS  Article  Google Scholar 

  45. Vacelet J, Donadey C (1977) Electron microscope study of the association between some sponges and bacteria. J Exp Mar Biol Ecol 30:301–314. doi:10.1016/0022-0981(77)90038-7

    Article  Google Scholar 

  46. Vieira RP, Gonzalez AM, Cardoso AM, Oliveira DN, Albano RM, Clementino MM et al (2008) Relationships between bacterial diversity and environmental variables in a tropical marine environment, Rio de Janeiro. Environ Microbiol 10(1):189–199. doi:10.1111/j.1462-2920.2007.01443.x

    CAS  PubMed  Google Scholar 

  47. Webster N, Hill RT (2001) The culturable microbial community of the Great Barrier Reef sponge Rhopaloeides odorabile is dominated by an a-proteobacterium. Mar Biol (Berl) 138:843–851. doi:10.1007/s002270000503

    CAS  Article  Google Scholar 

  48. Webster NS, Wilson KJ, Blackall LL, Hill RT (2001) Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl Environ Microbiol 67:434–444. doi:10.1128/AEM.67.1.434-444.2001

    CAS  Article  Google Scholar 

  49. Webster NS, Negri AP, Munro MM, Battershill CN (2004) Diverse microbial communities inhabit Antarctic sponges. Environ Microbiol 6:288–300. doi:10.1111/j.1462-2920.2004.00570.x

    Article  Google Scholar 

  50. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  Article  Google Scholar 

  51. Wichels A, Würtz S, Döpke H, Schütt C, Gerdts G (2006) Bacterial diversity in the breadcrumb sponge Halichondria panicea (Pallas). FEMS Microbiol Ecol 56(1):102–118. doi:10.1111/j.1574-6941.2006.00067.x

    CAS  Article  Google Scholar 

  52. Wörheide G (2006) Low variation in partial cytochrome oxidase subunit I (COI) mitochondrial sequences in the coralline demosponge Astrosclera willeyana across the Indo-Pacific. Mar Biol (Berl) 148:907–912. doi:10.1007/s00227-005-0134-y

    Article  Google Scholar 

  53. Zhu P, Li Q, Wang G (2007) Unique microbial signatures of the alien Hawaiian marine sponge Suberites zeteki. Microb Ecol 55(3):406–414. doi:10.1007/s00248-007-9285-3 Online first

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Genome Sequencing facilities core Johanna Döbereiner, IBqM/UFRJ. We are grateful to Alvaro N. A. Monteiro for enthusiastic discussions and manuscript review. We thank Fernando C. Moraes (Museu Nacional, UFRJ) for help with sample collection. We are also grateful to Noemia Rodrigues (IBCCF, UFRJ) for help with TEM. This work was supported by grants and fellowships from FAPERJ (E-26/171.282/2006) and CNPq, Brazil. The experiments described here comply with the Brazilian environmental protection laws.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guilherme Muricy.

Additional information

Communicated by M. Kühl.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Turque, A.S., Cardoso, A.M., Silveira, C.B. et al. Bacterial communities of the marine sponges Hymeniacidon heliophila and Polymastia janeirensis and their environment in Rio de Janeiro, Brazil. Mar Biol 155, 135–146 (2008). https://doi.org/10.1007/s00227-008-1008-x

Download citation

Keywords

  • Sponge
  • Bacterial Community
  • Sponge Species
  • Sponge Tissue
  • Bacterial Phylotypes