Skip to main content

Advertisement

Log in

Seasonal variation in the white muscle biochemical composition of deep-sea macrourids in the North-east Atlantic

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The foremost temporal signal to the deep benthos, where temperature and light conditions are relatively constant, is a seasonal pulse of organic carbon sinking from the photic layer. In the Porcupine Seabight region of the NE Atlantic this flux begins during late spring and early summer, although the timing and intensity of the peak varies annually. A rapid response to this nutrient input is most apparent amongst bacteria and benthic meiofauna which can directly utilize the carbon. The question remains as to whether the seasonal influx of carbon to the deep Atlantic may affect, and possibly entrain, aspects of the life cycles of generalist scavengers near the top of the trophic hierarchy, such as macrourid fish. Biochemical analyses of the white muscle of three macrourid species indicate a slight seasonal effect. White muscle protein content in Coryphaenoides rupestris is twofold higher in autumn than spring, RNA content and RNA to protein ratio increased in C. guentheri in autumn, and protein, RNA, and RNA to protein ratio all are higher during autumn than spring in shallow living C. armatus (2,500 m). Changes in RNA to protein ratio in the white muscle of C. armatus, relative to depth of capture, appear to reflect expected patterns in specific growth rate. Significantly higher RNA to protein ratios are apparent in shallow than deep living C. armatus in both seasons. There is no significant decline in white muscle protein content with depth of capture in these three taxonomically related species. Data were collected over several successive years and the possibility of interannual variability complicates the interpretation of seasonal patterns. Despite these limitations this study does indicate a slight seasonal difference in the growth rate of C. rupestris, C. guentheri and C. armatus in the deep Northeast Atlantic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aberle N, Witte U (2003) Deep-sea macrofauna exposed to a simulated sedimentation event in the abyssal NE Atlantic: in situ pulse-chase experiments using 13C-labelled phytodetritus. Mar Ecol Prog Ser 251:37–47. doi:10.3354/meps251037

    Article  Google Scholar 

  • Allain V (1999a) -cologie, biologie et exploitation des populations de poisons profonds de l’Atlantic du Nord-Est. Thesis, Univ. de Bretagne Occidentale, Brest, 376 p

  • Allain V (2001) Reproductive strategies of three deep-water benthopelagic fishes from the northeast Atlantic Ocean. Fish Res 51:165–176. doi:10.1016/S0165-7836(01)00243-0

    Article  Google Scholar 

  • Allain V, Lorance P (2000) Age estimation and growth of some deep-sea fish from the Northeast Atlantic Ocean. Cybium 24(3):7–16

    Google Scholar 

  • Bailey DM, Jamieson AJ, Bagley PM, Collins MA, Priede IG (2002) Measurement of in situ oxygen consumption of deep-sea fish using an autonomous lander vehicle. Deep Sea Res Part I Oceanogr Res Pap 49:1519–1529. doi:10.1016/S0967-0637(02)00036-5

    Article  Google Scholar 

  • Bergstad OA (1990) Distribution, population structure, growth and reproduction of the roundnose grenadier Coryphaenoides rupestris (Pisces: Macrouridae) in the deep waters of the Skagerrak. Mar Biol (Berl) 107:25–39. doi:10.1007/BF01313239

    Article  Google Scholar 

  • Bergstad OA (1995) Age determination of deep-water fishes: experience, status and challenges from the future. In: Hopper AG (ed) Deep-water fisheries of the North Atlantic Oceanic slope. Kluwer, Dordrecht

    Google Scholar 

  • Bergstad OA, Gordon JDM (1994) Deep-water ichthyoplankton of the Skagerrak with special reference to Coryphaenoides rupestris Gunnerus, 1765 (Pisces, Macrouridae) and Argentina silus (Ascanius, 1775) (Pisces, Argentinidae). Sarsia 79:33–43

    Article  Google Scholar 

  • Bergstad OA, Magnusson JV, Magnusson J, Hareide N-R, Reinert J (1998) Intercalibration of age readings of ling (Molva molva L.) blue ling (Molva dipterygia Pennant, 1784) and tusk (Brosme brosme L.). ICES J Mar Sci 55:309–318. doi:10.1006/jmsc.1997.9995

    Article  Google Scholar 

  • Black D, Love RM (1986) The sequential mobilisation and restoration of energy reserves in tissues of Atlantic cod during starvation and refeeding. J Comp Physiol B 156(4):469–479. doi:10.1007/BF00691032

    Article  CAS  Google Scholar 

  • Childress JJ (1995) Are there physiological and biochemical adaptations of metabolism in deep-sea animals? Trends Ecol Evol 10:30–36

    Article  CAS  PubMed  Google Scholar 

  • Childress JJ, Nygaard M (1973) The chemical composition of midwater fishes as a function of depth of occurrence off Southern California. Deep-Sea Res 20:1093–1109

    CAS  Google Scholar 

  • Childress JJ, Nygaard M (1974) Chemical composition and buoyancy of midwater crustaceans as a function of depth of occurrence off Southern California. Mar Biol (Berl) 27(3):225–238. doi:10.1007/BF00391948

    Article  CAS  Google Scholar 

  • Childress JJ, Cowles DL, Favuzzi JA, Mickel TJ (1990) Metabolic rates of benthic deep sea decapod crustaceans decline with increasing depth primarily due to the decline in temperature. Deep Sea Res 37:929–949

    Article  CAS  Google Scholar 

  • Collins MA, Bailey DM, Ruxton GD, Priede IG (2005) Trends in body size across an environmental gradient: a differential response in scavenging and non-scavenging demersal deep-sea fish. Proc R Soc B Biol Sci 272:2051–2057

    Article  CAS  Google Scholar 

  • Drazen JC (2002) A seasonal analysis of the nutritional condition of deep-sea macrourid fishes in the north-east Pacific. J Fish Biol 60:1280–1295. doi:10.1111/j.1095-8649.2002.tb01720.x

    Article  Google Scholar 

  • Drazen JC (2007) Depth related trends in proximate composition of demersal fishes in the eastern North Pacific. Deep Sea Res I 54:203–219

    Article  Google Scholar 

  • Faucconneau B, Breque J, Bielle C (1989) Influence of feeding on protein metabolism in Atlantic salmon (Salmo salar). Aquaculture 79:29–36. doi:10.1016/0044-8486(89)90442-0

    Article  Google Scholar 

  • Fraser KPP, Clarke A, Peck LS (2002a) Feast and famine in Antarctica: seasonal physiology in the limpet Nacella concinna. Mar Ecol Prog Ser 242:169–177. doi:10.3354/meps242169

    Article  Google Scholar 

  • Fraser KPP, Clarke A, Peck LS (2002b) Low-temperature protein metabolism: seasonal changes in protein synthesis and RNA dynamics in the Antarctic limpet Nacella concinna Strebel 1908. J Exp Biol 205:3077–3086

    CAS  PubMed  Google Scholar 

  • Fraser KPP, Rogers AD (2007) Protein metabolism in marine animals: the underlying mechanism of growth. Adv Mar Biol 52:267–362. doi:10.1016/S0065-2881(06)52003-6

    Article  PubMed  Google Scholar 

  • Gooday AJ (1988) A response by benthic foraminifera to the deposition of phytodetritus in the deep sea. Nature 332:70–73. doi:10.1038/332070a0

    Article  Google Scholar 

  • Gooday AJ, Turley CM (1990) Responses by benthic organisms to inputs of organic material to the ocean floor: a review. Philos Trans R Soc Lond A 331:119–138. doi:10.1098/rsta.1990.0060

    Article  CAS  Google Scholar 

  • Goolish EM, Adelman IR (1987) Tissue-specific cytochrome oxidase activity in largemouth bass: the metabolic costs of feeding and growth. Physiol Zool 60:454–464

    Article  CAS  Google Scholar 

  • Gordon JDM (1978) Some notes on the biology of the roundnose grenadier Coryphaenoides rupestris to the West of Scotland. International Council Exploration Sea Committee Meeting (Demersal Fish Committee), G:40, pp 1–12

  • Gordon JDM (1979) Seasonal reproduction in deep-sea fish. In: Naylor E, Hartnoll RG (eds) Cyclic phenomena in marine plants and animals. Pergamon Press, Oxford, pp 223–229

    Chapter  Google Scholar 

  • Gordon JDM, Swan SC (1996) Validation of age readings from otoliths of juvenile roundnose grenadier, Coryphaenoides rupestris, a deep-water macrourid fish. J Fish Biol 49(Suppl A):217–238. doi:10.1111/j.1095-8649.1996.tb06078.x

    Article  Google Scholar 

  • Gordon JDM, Swan SC, Kelly CJ, Hareide N-R (1995) Age determination of juvenile roundnose grenadier, Coryphaenoides rupestris, a deep-water macrourid fish: a preliminary report, International Council for the Exploration of the Sea, Demersal fish committee report (Ref. D, H) ICES CM 1995/G:6

  • Guderley H, Dutil J-D, Pelletier D (1996) The physiological status of Atlantic cod, Gadus morhua, in the wild and the laboratory: estimates of growth rates under field conditions. Can J Fish Aquat Sci 53:550–557. doi:10.1139/cjfas-53-3-550

    Article  Google Scholar 

  • Haedrich RL, Henderson NR (1974) Pelagic food of Coryphaenoides rupestris. Deep Sea Res 21:739-744

    Google Scholar 

  • Haines TA (1973) An evaluation of RNA–DNA ratio as a measure of long-term growth in fish populations. J Fish Res Board Can 30:195–199

    Article  CAS  Google Scholar 

  • Houlihan DF, Carter CG, McCarthy ID (1995) Protein turnover in animals. In: Walsh PJ, Wright P (eds) Nitrogen metabolism and excretion. CRC Press, Boca Raton, pp 1–32

    Google Scholar 

  • Houlihan DF, Hall SJ, Gray C, Noble BS (1988) Growth rates and protein turnover in Atlantic cod, Gadus morhua. Can J Fish Aquat Sci 45:951–964

    Article  Google Scholar 

  • Houlihan DF, Hall SJ, Gray C (1989) Effects of ration on protein turnover in cod. Aquaculture 79:103–110. doi:10.1016/0044-8486(89)90450-X

    Article  Google Scholar 

  • Houlihan DF (1991) Protein turnover in ectotherms and its relationship to energetics. In: Gilles R (ed) Advances in comparative and environmental physiology, vol 7. Springer, Berlin

    Chapter  Google Scholar 

  • Houlihan DF, Mathers EM, Foster A (1993) Biochemical correlates of growth rate in fish. In: Rankin JC, Jensen FB (eds) Fish ecophysiology. Chapman and Hall, London, pp 45–71

    Chapter  Google Scholar 

  • Johnston IA, Goldspink G (1973) Some effects of prolonged starvation on the metabolism of the red and white myotomal muscles of the plaice Pleuronectes platessa. Mar Biol (Berl) 19:348–353. doi:10.1007/BF00348906

    Article  CAS  Google Scholar 

  • Kelly CJ, Connolly PL, Bracken JJ (1996) Maturity, oocyte dynamics and fecundity of the roundnose grenadier from the Rockall trough. J Fish Biol 49:5–17. doi:10.1111/j.1095-8649.1996.tb06064.x

    Article  Google Scholar 

  • Kelly CJ, Connolly PL, Bracken JJ (1997) Age estimation, growth, maturity and distribution of the roundnose grenadier from the Rockall trough. J Fish Biol 50(1):1–17. doi:10.1111/j.1095-8649.1997.tb01336.x

    Article  Google Scholar 

  • Kiessling A, Hung SSO, Storebakken T (1993) Differences in protein mobilization between ventral and dorsal parts of white epaxial muscle from fed, fasted and refed white sturgeon (Acipenser transmontanus). J Fish Biol 43:401–408. doi:10.1111/j.1095-8649.1993.tb00575.x

    Article  CAS  Google Scholar 

  • Lampitt RS (1985) Evidence for the seasonal deposition of detritus to the deep-sea floor and its subsequent resuspension. Deep Sea Res 32(8):885–897. doi:10.1016/0198-0149(85)90034-2

    Article  Google Scholar 

  • Levin LA, Gooday AJ (2003) The deep atlantic ocean. In: Tyler PA (ed) Ecosystems of the World 28: ecosystems of the deep oceans. Elsevier, Amsterdam, p 569

    Google Scholar 

  • Longhurst A (1998) Ecological geography of the sea. Academic Press, San Diego

    Google Scholar 

  • Loughna PT, Goldspink G (1984) The effects of starvation upon protein turnover in red and white myotomal muscle of rainbow trout, Salmo gairdneri Richardson. J Fish Biol 25:223–230. doi:10.1111/j.1095-8649.1984.tb04869.x

    Article  CAS  Google Scholar 

  • Love M (1980) The chemical biology of fishes, vol 2: advances 1968–1977. Academic Press, London, p 943

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin–phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Lowery MS, Somero GN (1990) Starvation effects on protein synthesis in red and white muscle of the barred sand bass, Paralabrax nebulifer. Physiol Zool 63:630–648

    Article  Google Scholar 

  • Lyndon AR, Houlihan DF, Hall SJ (1992) The effect of short term fasting and a single meal on protein synthesis and oxygen consumption in cod. J Comp Physiol 162B:209–215

    Article  Google Scholar 

  • Mathers EM, Houlihan DF, Cunningham MJ (1992a) Estimation of saithe Pollachius virens growth rates around the Beryl oil platforms in the North Sea: a comparison of methods. Mar Ecol Prog Ser 86:31–40. doi:10.3354/meps086031

    Article  Google Scholar 

  • Mathers EM, Houlihan DF, Cunningham MJ (1992b) Nucleic acid concentrations and enzyme activities as correlates of growth rate of the saithe Pollachius virens: growth-rate estimates of open-sea fish. Mar Biol (Berl) 112:363–369. doi:10.1007/BF00356280

    Article  CAS  Google Scholar 

  • McCarthy ID, Houlihan DH (1996) The effect of temperature on protein metabolism in fish: the possible consequences for wild Atlantic salmon (Salmo salar L.) stocks in Europe as a result of global warming. In: Wood CM, McDonald DO (eds) Society for experimental biology seminar series 61: global warming implications for freshwater and marine fish. Cambridge University Press, Cambridge, pp 51–77

    Google Scholar 

  • McCarthy I, Mokness E, Pavlov DA (1998) The effects of temperature on growth rate and growth efficiency of juvenile common wolffish. Aquac Int 6:207–218

    Article  Google Scholar 

  • Millward DJ, Garlick PJ, James WPT, Nnanyelugo DO, Ryatt JS (1973) Relationship between protein synthesis and RNA content in skeletal muscle. Nature 241:204–205. doi:10.1038/241204a0

    Article  CAS  PubMed  Google Scholar 

  • Mauchline J, Gordon JDM (1984) Diets and bathymetric distributions of the macrourid fish of the Rockall Trough, northeastern Atlantic Ocean. Mar Biol (Berl) 81:107–121. doi:10.1007/BF00393109

    Article  Google Scholar 

  • McMillan DN, Houlihan DF (1988) The effect of refeeding on tissue protein synthesis in rainbow trout. Physiol Zool 61(5):429–441

    Article  Google Scholar 

  • Mejbaum W (1939) Über die bestimmung kleiner pentosemengen, insbesondere in derivaten der adenylsäure. Hoppe Seylers Z Physiol Chem 258:117–120

    Article  CAS  Google Scholar 

  • Merrett NR (1978) On the identity and pelagic occurrence of larval and juvenile stages of rattail fishes (Family Macrouridae) from 60 N, 20 W and 53 N, 20 W. Deep-Sea Res 25:147–160. doi:10.1016/0146-6291(78)90002-4

    Article  Google Scholar 

  • Merrett NR, Barnes SH (1996) Preliminary survey of egg envelope morphology in the Macrouridae and the possible implications of its ornamentation. J Fish Biol 48:101–119. doi:10.1111/j.1095-8649.1996.tb01422.x

    Article  Google Scholar 

  • Merrett NR, Haedrich RL (1997) Deep-sea demersal fish and fisheries. Chapman and Hall, London, p 282

    Google Scholar 

  • Nybakken JW (2001) Marine biology, an ecological approach, 5th edn edn. Benjamin Cummings, San Francisco, p 516

    Google Scholar 

  • Pain VM, Clemens MJ (1980) Mechanism and regulation of protein biosynthesis in eukaryotic cells. In: Buttery PJ, Lindsey B (eds) Protein deposition in animals. Butterworths, London

    Google Scholar 

  • Parsons TR, Lalli CM (1988) Comparative oceanic ecology of the plankton communities of the subarctic Atlantic and Pacific oceans. Oceanogr Mar Biol Annu Rev 26:317–359

    Google Scholar 

  • Pearcy WG, Ambler JW (1974) Food habits of deep-sea macrourid fishes off the Oregon coast. Deep Sea Res 21:745–759

    Google Scholar 

  • Pocrnjic Z, Mathews RW, Rappaport S, Haschemeyer AEV (1983) Quantitative protein synthesis rates in various tissues of a temperate fish in vivo by the method of phanylalanine swamping. Comp Biochem Physiol 74B:735–738

    CAS  Google Scholar 

  • Polloni P, Haedrich R, Rowe G, Clifford CH (1979) The size–depth relationship in deep ocean animals. Int Rev Ges Hydrobiol 64:39–46

    Article  Google Scholar 

  • Priede IG, Bagley PM (2000) In situ studies on deep-sea demersal fishes using autonomous unmanned lander platforms. Oceanogr Mar Biol Annu Rev 38:357–392

    Google Scholar 

  • Priede IG, Bagley PM, Smith KL Jr (1994) Seasonal change in activity of abyssal demersal scavenging grenadiers Coryphaenoides (Nematonurus) armatus in the eastern North Pacific Ocean. Limnol Oceanogr 39:279–285

    Article  Google Scholar 

  • Rannou M (1975) Donn.es nouvelles sur l’activit. reproductrice cyclicque des poisons benthiques bathyaux et abyssaux. CR Acad Sci Par 281(D):1023–1025

    CAS  Google Scholar 

  • Rannou M, Thiriot-Quievreux C (1975) Structure des otolithes d’un Macrouridae (Poisson, Gadiforme) bathyal. -tude au microscope .lectronique a balayage. Ann Inst Oceanogr 51:195–201

    Google Scholar 

  • Rice AL, Billett DSM, Thurston MH, Lampitt RS (1991) The Institute of Oceanographic Sciences biology programme in the Porcupine Seabight: background and general introduction. J Mar Biol Assoc UK 71:281–310

    Article  Google Scholar 

  • Ruxton GD, Bailey DM (2005) Searching speeds and the energetic feasibility of an obligate whale-scavenging fish. Deep Sea Res Part I Oceanogr Res Pap 52:1536–1541. doi:10.1016/j.dsr.2005.02.008

    Article  Google Scholar 

  • Sedberry GR, Musick JA (1978) Feeding strategies of some demersal fishes of the continental slope and rise off the Mid-Atlantic Coast of the USA. Mar Biol 44(4):357–375

    Article  Google Scholar 

  • Siebenaller JF, Yancey PH (1984) Protein composition of white skeletal muscle from mesopelagic fishes having different water and protein contents. Mar Biol (Berl) 78(2):129–137. doi:10.1007/BF00394692

    Article  CAS  Google Scholar 

  • Smith K (1978) Metabolism of the abyssopelagic rattail Corphypahenoides armatus measured in situ. Nature 274:362–364. doi:10.1038/274362a0

    Article  CAS  Google Scholar 

  • Smith MAK (1981) Estimation of growth potential by measurement of tissue protein synthetic rates in feeding and fasting rainbow trout, Salmo gairdnerii Richardson. J Fish Biol 19(2):213. doi:10.1111/j.1095-8649.1981.tb05825.x

    Article  CAS  Google Scholar 

  • Smith KL, Baldwin RJ (1984) Seasonal fluctuations in deep-sea sediment community oxygen consumption: central and eastern North Pacific. Nature 307:624–626

    Article  CAS  Google Scholar 

  • Stein DL, Pearcy WG (1982) Aspects of reproduction, early life history, and biology of macrourid fishes off Oregon, U.S.A. Deep-Sea Res 29(11A):1313–1329. doi:10.1016/0198-0149(82)90011-5

    Article  Google Scholar 

  • Storch D, Lannig G, Pörtner HO (2005) Temperature-dependent protein synthesis capacities in Antarctic and temperate (North Sea) fish (Zoarcidae). J Exp Biol 208:2409–2420

    Article  CAS  PubMed  Google Scholar 

  • Swan SC, Gordon JDM (2001) A review of age estimation in macrourid fishes with new data on age validation of juveniles. Fish Res 1199:1–19

    Google Scholar 

  • Tyler PA (1988) Seasonality in the deep sea. Oceanogr Mar Biol Annu Rev 26:227–258

    Google Scholar 

  • Witte U, Aberle N, Sand M, Wenzhöfer F (2003) Rapid response of a deep-sea benthic community to POM enrichment: an in situ experimental study. Mar Ecol Prog Ser 251:27–36. doi:10.3354/meps251027

    Article  Google Scholar 

  • Yang TH, Somero GN (1993) Effect of feeding and food deprivation on oxygen consumption, muscle protein concentration and activities of energy metabolism enzymes in muscle and brain of shallow-living (Scorpaena gutata) and deep-living (Sebastolobus alasconus) scorpaenid fishes. J Exp Biol 181:213–132

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank JC Drazen and two anonymous reviewers for critically reviewing this manuscript. This work was supported by NERC grant GR3/12789. We thank the ship companies and crew of RRS Discovery cruises 255, 260 and 266. Many thanks also to R Shreeve of the British Antarctic Survey for her assistance with this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Kemp.

Additional information

Communicated by A. Atkinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kemp, K.M., Fraser, K.P.P., Collins, M.A. et al. Seasonal variation in the white muscle biochemical composition of deep-sea macrourids in the North-east Atlantic. Mar Biol 155, 37–49 (2008). https://doi.org/10.1007/s00227-008-1004-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-008-1004-1

Keywords

Navigation