Advertisement

Marine Biology

, Volume 153, Issue 6, pp 1245–1256 | Cite as

Comparative biochemical composition of ploidy groups of the lion-paw scallop (Nodipecten subnodosus Sowerby) supports the physiological hypothesis for the lack of advantage in triploid mollusc’s growth in food-rich environments

  • Ilie S. RacottaEmail author
  • Elena Palacios
  • Ana M. Ibarra
  • José Luis Ramírez
  • Fabiola Arcos
  • Olivia Arjona
Research Article

Abstract

Induction of triploidy in aquatic organisms has increased worldwide in the last two decades, mostly because triploids have better growth than diploids. According to a physiological hypothesis, partial or total sterility of triploids allows the accumulation of reserves in muscle and other tissues instead of being transferred to the gonad. The present study analyzes lipid, protein, carbohydrate, and fatty acid levels in muscle and gonads of Nodipecten subnodosus triploids and diploids over 18 months from June 2001 to December 2002. An important increase in gonadosomatic index of diploids scallops was observed from May to June 2002 reaching the highest values in August. Such increase was not observed in triploid scallops. Changes in biochemical composition in female gonad were in general related to the accumulation of reserves during gonad development of diploid scallops. This accumulation was lower for triploid scallops, in accordance to their sterility, especially for carbohydrates and acylglycerides. Adductor muscle index as well as protein and carbohydrate levels in muscle increased in both ploidy groups during the reproductive period indicating no mobilization of reserves to sustain gonad development in both ploidy groups. These results partially support the physiological hypothesis on the advantage of triploids: in a rich food locality no mobilization of reserves is needed to sustain gametogenesis. This, together with a possible lower efficiency of energy assimilation at high food concentration for triploids, may be the reason for an apparent lack of superiority of N. subnodosus triploids in terms of adductor muscle growth. Only the levels of particular highly unsaturated fatty acids levels (namely 20:4n-6 and 20:5n-3) in muscle of diploid and triploid decreased during the reproductive period, indicating a possible transfer of selected fatty acids to gonads, even in triploids. The muscle of triploids has a slightly but significantly higher proportion of 22:6n-3 compared to diploids, which can have implications for the nutritional and commercial value of triploid adductor muscle.

Keywords

Adductor Muscle Lipid Fraction Polar Fraction Highly Unsaturated Fatty Acid Gonadosomatic Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors gratefully acknowledge sampling support of Rosalío Maldonado-Amparo, and technical support of Roberto Hernández, Susana Avila, and Dulce Luna. This project received support from grants CONACYT-28256-B to A.M. Ibarra and SIMAC-BCS7001 to E. Palacios.

References

  1. Allen Jr SK, Downing SL (1986) Performance of triploid Pacific oysters, Crassostrea gigas (Thunberg). I. Survival, growth, glycogen content and sexual maturation in yearlings. J Exp Mar Biol Ecol 102:197–208CrossRefGoogle Scholar
  2. Allen Jr SK, Downing SL (1990) Performance of triploid Pacific oysters Crassostrea gigas: gametogenesis. Can J Fish Aquat Sci 47:1213–1222CrossRefGoogle Scholar
  3. Allen Jr SK, Hidu H, Stanley JG (1986) Abnormal gametogenesis and sex ratio in triploid soft-shell clams (Mya arenaria). Biol Bull 170:198–210CrossRefGoogle Scholar
  4. Arellano-Martínez M, Racotta IS, Ceballos-Vázquez BP, Elorduy-Garay JF (2004a) Biochemical composition, reproductive activity, and food availability of the lion’s paw scallop Nodipecten subnodosus in the laguna Ojo de Liebre. Baja California Sur, Mexico. J Shellfish Res 23:15–23Google Scholar
  5. Arellano-Martínez M, Ceballos-Vázquez BP, Villalejo-Fuerte M, Garcia-Dominguez F, Elorduy-Garay JF, Esliman-Salgado A, Racotta IS (2004b) Reproduction of the lion’s paw scallop Nodipecten subnodosus Sowerby, 1835 (Bivalvia:Pectinidae) from Laguna Ojo de Liebre Lagoon, B.C.S., México. J Shellfish Res 23:723–730Google Scholar
  6. Barber BJ, Blake NJ (1981) Energy storage and utilization in relation to gametogenesis in Argopecten irradians concentricus (Say). J Exp Mar Biol Ecol 52:121–134CrossRefGoogle Scholar
  7. Barber BJ, Blake NJ (1983) Growth and reproduction of the bay scallop, Argopecten irradians (Lamarck) at its southern distribution limit. J Exp Mar Biol Ecol 66:247–256CrossRefGoogle Scholar
  8. Barber BJ, Blake NJ (1985) Intra-organ biochemical transformations associated with oogenesis in the Bay scallop, Argopecten irradians concentricus (Say), as indicated by 14C incorporation. Biol Bull 168:39–49CrossRefGoogle Scholar
  9. Barber BJ, Blake NJ (1991) Reproductive physiology. In: Shumway SE (ed) Scallops: biology, ecology and aquaculture. Elsevier, West Boothbay Harbor, pp 377–428Google Scholar
  10. Barnes H, Blackstock J (1973) Estimation of lipids in marine animals and tissues: detailed investigation of the sulphophosphovanillin method for ‘total’ lipids. J Exp Mar Biol Ecol 12:103–118CrossRefGoogle Scholar
  11. Baquiero EC, Massó JA, Guajardo H (1982) Distribución y abundancia de moluscos de importancia comercial en Baja California Sur. Secretaria de Pesca, México, pp 1–32Google Scholar
  12. Beaumont AR (1986) Genetic aspects of hatchery rearing of the scallop, Pecten maximus (L.). Aquaculture 57:99–110CrossRefGoogle Scholar
  13. Beltrán-Lugo AI, Maeda-Martínez A, Pacheco-Aguilar R, Nolasco-Soria H (2006) Seasonal variations in chemical, physical, textural, and microstructural properties of adductor muscles of Pacific lions-paw scallop (Nodipecten subnodosus). Aquaculture 258:619–632CrossRefGoogle Scholar
  14. Beninger PG, Stephan G (1985) Seasonal variations in the fatty acids of the triacylglycerols and phospholipids of two populations of adult clam (Tapes decussatus L. and T. philippinarum) reared in a common habitat. Comp Biochem Physiol 81B:591–601Google Scholar
  15. Besnard J-Y, Lubet P, Nouvelot A (1989) Seasonal variations of the fatty acid content of the neutral lipids and phospholipids in the female gonad of Pecten maximus L. Comp Biochem Physiol. 93B:21–26Google Scholar
  16. Bradford MM (1976) A rapid and sensitive method for the quatitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–253PubMedCrossRefGoogle Scholar
  17. Brokordt KB, Guderley H (2004) Energetic requirements during gonad maturation and spawning in scallops: sex differences in Chlamis islandica (Müller 1776). J Shellfish Res 23:25–32Google Scholar
  18. Cohen Z, Khozin-Goldberg I, Adlerstein D, Bigogno C (2000) The role of triacylglycerol as a reservoir of polyunsaturated fatty acids for the rapid production of chloroplastic lipids in certain microalgae. Biochem Soc 28:740–743CrossRefGoogle Scholar
  19. Couturier CY, Newkirk GF (1991) Biochemical and gametogenic cycles in scallops, Placopecten magellanicus (Gmelin, 1791), held in suspention culture. In: Shumway SE, Sandifer PA (eds) An international compendium of scallop biology and culture. The World Aquaculture Society, Baton Rouge, pp 107–117Google Scholar
  20. Delaunay F, Marty Y, Moal J, Samain JF (1993) The effect of monoespecific algal diets on growth and fatty acid composition of Pecten maximus (L.) larvae. J Exp Mar Biol Ecol 173:163–179CrossRefGoogle Scholar
  21. Felix-Pico EF, Villalejo-Fuerte M, Tripp-Quezada A, Holguin-Quiñones O (1999) Growth and survival of Lyropecten subnodosus (Sowerby, 1835) in suspended culture at the national marine park of Bahia de Loreto, B.C.S., Mexico. 12th inter. pectinid workshop, Bergen, pp 39–40Google Scholar
  22. Gabbot PA (1975) Storage cycles in marine bivalve molluscs: a hypothesis concerning the relationship between glycogen metabolism and gametogenesis. In: Barnes H (ed) Proc.9th Europ. mar. biol. symp. Aberdeen University Press, pp 191–211Google Scholar
  23. García-Cuellar JA, García-Domínguez F, Lluch-Belda D, Hernández-Vázquez S (2004) El Niño and La Niña effects on reproductive cycle of the pearl oyster Pinctada mazatlanica (Hanley, 1856) (Pteridae) at Isla Espiritu Santo in the Gulf of California. J. Shellfish Res 23:113–120Google Scholar
  24. Garcia-Dominguez F, Castro-Moroyoqui P, Felix-Pico EF (1992) Spat settlement and early growth of Lyropecten subnudosus (Sowerby, 1835) in Laguna Ojo de Liebre, B.C.S., Mexico, 1989–1990. J. Shellfish Res 11:195Google Scholar
  25. Hand RE, Nell JA, Reid DD, Smith IR, Maguire GB (1999) Studies on triploid oysters in Australia: effect of initial size on growth of diploid and triploid Sydney rock oysters, Saccostrea commercialis (Iredale & Roughley). Aquac Res 30:35–42CrossRefGoogle Scholar
  26. Kesarcodi-Watson A, Klumpp DW, Lucas JS (2001) Comparative feeding and physiological energetics in diploid and triploid Sydney rock oysters (Saccostrea commercialis)-II. Influences of food concentration and tissue energy distribution. Aquaculture 203:195–216CrossRefGoogle Scholar
  27. Kiyomoto M, Komaru K, Scarpa J, Wada KT, Danton E, Awaji M (1996) Abnormal gametogenesis, male dominant sex ratio, and sertoli cell morphology in induced triploid mussel, Mytilus galloprovincialis. Zool Sci 13:393–402CrossRefGoogle Scholar
  28. Komaru A, Wada KT (1989) Gametogenesis and growth of induced triploid scallop Chlamys nobilis. Nipón Suisan Gakkaishi 55:447–452Google Scholar
  29. Maeda-Martínez A, Lombeida P, Freites L, Lodeiros C, Sicard MT (2001) Cultivo de pectinidos en fondo y estanques. In: Maeda-Martínez AN (ed) Los moluscos pectinidos de Iberoamerica: Ciencia y Acuicultura. Noriega editores Mexico, pp 213–231Google Scholar
  30. Maldonado-Amparo R, Ibarra AM (2002a) Ultrastructural characteristics of spermatogenesis in diploid and triploid catarina scallop (Argopecten ventricosus Sowerby II, 1842). J Shellfish Res 21:93–101Google Scholar
  31. Maldonado-Amparo R, Ibarra AM (2002b) Comparative analysis of oocyte type frequencies in diploid and triploid catarina scallop (Argopecten ventricosus) as indicators of meiotic failure. J. Shellfish Res 21:597–603Google Scholar
  32. Maldonado-Amparo R, Ramírez JL, Avila S, Ibarra AM (2004) Triploid lion-paw scallop (Nodipecten subnodosus Sowerby); growth, gametogenesis, and gametic cell frequencies when grown at a high food availability site. Aquaculture 235:185–205CrossRefGoogle Scholar
  33. Martínez G (1991) Seasonal variations in biochemical composition of three size classes of the Chilean scallop Argopecten purpuratus Lamarck, 1819. Veliger 34:335–343Google Scholar
  34. Martinez G, Torres M, Uribe E, Díaz MA, Pérez H (1992) Biochemical composition of broodstock and early juvenile chilean scallops, Argopecten purpuratus Lamarck, held in two different environments. J Shellfish Res 11:307–311Google Scholar
  35. Napolitano GE, Ackman RG (1993) Fatty acid dynamics in sea scallops Placopecten magellanicus (Gmelin, 1791) from Georges Bank, Nova Scottia. J Shellfish Res 12:267–277Google Scholar
  36. Navarro JC, Henderson RJ, McEvoy LA, Bell MV, Amat F (1999) Lipid conversion during the enrichment of Artemia. Aquaculture 174:155–166CrossRefGoogle Scholar
  37. Palacios E, Racotta IS, Ibarra AM, Ramírez JL, Millan A, Avila S (2004) Comparison of biochemical composition and muscle hypertrophy associated with the reproductive cycle of diploid and triploid Argopecten ventricosus scallops. J Shellfish Res 23:483–489Google Scholar
  38. Palacios E, Racotta IS, Marty Y, Kraffe E, Moal J, Samain JF (2005) Lipid composition of the Pacific lion-paw scallop, Nodipecten (Lyropecten) subnodosus, in relation to gametogenesis. I. Fatty acids. Aquaculture 250:95–101CrossRefGoogle Scholar
  39. Palacios E, Racotta IS, Arjona O, Marty Y, Le Coz JR, Moal J (2007) Lipid composition of the pacific lion-paw scallop, Nodipecten subnodosus, in relation to gametogenesis 2. Lipid classes and sterols. Aquaculture 266:266–273CrossRefGoogle Scholar
  40. Palma-Fleming H, Navarro JM, Peña E, Martínez G (2002) Effect of three conditioning-diets on the fatty acid composition of gonads and muscle of Argopecten purpuratus. New Zeal. J Mar Fresh 36:605–620 Google Scholar
  41. Pazos AJ, Roman G, Acosta CP, Abad M, Sanchez JL (1997) Seasonal changes in condition and biochemical composition of the scallop Pecten maximus L. from suspended culture in the Ria de Arousa (Galicia, N.W. Spain) in relation to environmental conditions. J Exp Mar Biol Ecol 211:169–193CrossRefGoogle Scholar
  42. Pipe RK (1987) Ultrastructure and cytochemical study on interactions between nutrient storage cells and gametogenesis in the mussel Mytilus edulis. Mar Biol 96:519–528CrossRefGoogle Scholar
  43. Pollero RJ, Ré ME, Brenner RR (1979) Seasonal changes of the lipids of the mollusc Chlamys tehuelcha. Comp Biochem Physiol 64A:257–263CrossRefGoogle Scholar
  44. Racotta IS, Ramírez JL, Ibarra AM, Rodriguez-Jaramillo C, Carreño D, Palacios E (2003) Growth and gametogenesis in the lion-paw scallop Nodipecten (Lyropecten) subnodosus. Aquaculture 217:335–349CrossRefGoogle Scholar
  45. Reinecke-Reyes MA (1996) Madurez y desove de la almeja Mano de León Lyropecten subnodosus Sowerby, 1835 (Bivalvia:Pectinidae) en laguna Ojo de Liebre, B.C.S. México. Boletín Pesquero CRIP-La Paz 3:17–20Google Scholar
  46. Roe JH (1955) The determination of sugar in blood and spinal fluid with antrone reagent. J Biol Chem 212:335–343PubMedGoogle Scholar
  47. Roman G, Martinez G, Garcia O, Freites L (2001) Reproducción. In: Maeda-Martínez AN (ed) Los moluscos pectinidos de Iberoamerica: Ciencia y Acuicultura. Noriega editores, Mexico, pp 27–59Google Scholar
  48. Ruiz-Verdugo CA, Ramírez JL, Allen SKJr, Ibarra AM (2000) Triploid caterina scallop (Argopecten ventricosus Sowerby II, 1842): growth, gametogenesis, and suppression of functional hermaphroditism. Aquaculture 186:13–32CrossRefGoogle Scholar
  49. Ruiz-Verdugo CA, Racotta IS, Ibarra AM (2001) Comparative biochemical composition in gonad and adductor muscle in triploid and diploid catarina scallop (Argopecten ventricosus Sowerby II, 1842). J Exp Mar Biol Ecol 259:155–170PubMedCrossRefGoogle Scholar
  50. Sargent JR, Tocher DR, Bell JG (2002) The lipids. In: Halver JE, Hardy RW (eds) Fish nutrition. Academic Press, San Diego, pp 181–257Google Scholar
  51. Simopoulos AP (1999) Essential fatty acids in health and chronic disease. Am J Clin Nutr 70:560S–569SPubMedGoogle Scholar
  52. Sokal RR, Rohlf FJ (1981) Biometry: the principles and practice of statistics in biological research. W.H. Freeman and Company, New YorkGoogle Scholar
  53. Soudant P, Marty Y, Moal J, Robert R, Quéré C, Le Coz JR, Samain JF (1996) Effect of food fatty acid and sterol quality on Pecten maximus gonad composition and reproduction process. Aquaculture 143:361–378CrossRefGoogle Scholar
  54. Surier A, Zarnoch CB, Karney RC (2006) Biochemical composition and adductor muscle cell size of triploid and diploid Bay scallop Argopecten irradians. J Shellfish Res 25:780Google Scholar
  55. Tabarini CL (1984) Induced triploidy in the Bay scallop, Argopecten irradians, and its effect on growth and gametogenesis. Aquaculture 42:151–160CrossRefGoogle Scholar
  56. Thompson RJ, MacDonald BA (1991) Physiological integrations and energy partitioning. In: Shumway SE (ed) Scallops: biology, ecology and aquaculture. Elsevier, West Boothbay Harbor, pp 347–376Google Scholar
  57. Turner N, Else PL, Hulbert AJ (2003) Docosahexaenoic acid (DHA) content of membranes determines molecular activity of the sodium pump: implications for disease states and metabolism. Naturwissenschaften 90:521–523PubMedCrossRefGoogle Scholar
  58. Utting SD, Millican PF, Laing I, (1996) The breeding potential and biochemical composition of triploid Manila clams, Tapes philippinarum Adams and Reeve. Aquac Res 27:573–580Google Scholar
  59. Wolff M (1988) Spawning and recruitment in the Peruvian scallop Argopecten purpuratus. Mar Ecol Prog Ser 42:213–217CrossRefGoogle Scholar
  60. Yang H, Zhang F, Guo X (2000) Triploid and tetraploid Zhikong Scallop, Chlamys farreri Jones et Preston, produced by inhibiting polar body I. Mar Biotechnol 2:466–475PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Ilie S. Racotta
    • 1
    Email author
  • Elena Palacios
    • 1
  • Ana M. Ibarra
    • 1
  • José Luis Ramírez
    • 1
  • Fabiola Arcos
    • 1
  • Olivia Arjona
    • 1
  1. 1.Programa de AcuaculturaCentro de Investigaciones Biológicas del Noroeste La PazMexico

Personalised recommendations