Skip to main content
Log in

The fate of dietary lipids in the Arctic ctenophore Mertensia ovum (Fabricius 1780)

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Lipids of the Arctic ctenophore Mertensia ovum, collected from Kongsfjorden (Svalbard) in 2001, were analysed to investigate seasonal variability and fate of dietary lipids. Total lipids, lipid classes and fatty acid and alcohol compositions were determined in animals, which were selected according to age-group and season. Changes in lipids of age-group 0 animals were followed during growth from spring to autumn. Total lipids increased from May to September. Lipids as percentage of dry mass were lowest in August indicating their use for reproduction. Higher values occurred in September, which may be due to lipid storage for overwintering. Wax esters were the major lipid class accounting for about 50% of total lipids in age-group 0 animals from July and August. Phospholipids were the second largest lipid fraction with up to 46% in this age-group. The principal fatty acids of M. ovum from all age-groups were 22:6(n-3), 20:5(n-3) and 16:0. Wax ester fatty alcohols were dominated by 22:1(n-11) and 20:1(n-9) followed by moderate proportions of 16:0. The unique feature of M. ovum lipids was the high amount of free fatty alcohols originating probably from the dietary wax esters. In May, free alcohols exhibited the highest mean proportion with 14.6% in age-group 0 animals. We present the first data describing a detailed free fatty alcohol composition in zooplankton. This composition was very different from the alcohol composition of M. ovum wax esters because of the predominance of the long-chain monounsaturated 22:1(n-11) alcohol accounting for almost 100% of total free alcohols in some samples. The detailed lipid composition clearly reflected feeding of M. ovum on the herbivorous calanoid species, Calanus glacialis and C. finmarchicus, the abundant members of the zooplankton community in Kongsfjorden. Other copepod species or prey items seem to be less important for M. ovum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Albers CS, Kattner G, Hagen W (1996) The compositions of wax esters, triacylglycerols and phospholipids in Arctic and Antarctic copepods: evidence of energetic adaptations. Mar Chem 55:347–358

    Article  CAS  Google Scholar 

  • Basedow SL, Eiane K, Tverberg V, Spindler M (2004) Advection of zooplankton in an Arctic fjord (Kongsfjorden, Svalbard). Estuar Coast Shelf Sci 60:113–124

    Article  Google Scholar 

  • Böer M, Gannefors C, Kattner G, Graeve M, Hop H, Falk-Petersen S (2005) The Arctic pteropod Clione limacina: seasonal lipid dynamics and life-strategy. Mar Biol 147:707–717

    Article  Google Scholar 

  • Clarke A, Peck LS (1990) The physiology of polar marine zooplankton. Polar Res 10:355–369

    Article  Google Scholar 

  • Dalsgaard J, St John M, Kattner G, Müller-Navarra D, Hagen W (2003) Fatty acid trophic markers in the pelagic marine environment. Adv Mar Biol 46:225–340

    Article  Google Scholar 

  • Falk-Petersen S, Dahl TM, Scott CL, Sargent JR, Gulliksen B, Kwasniewski S, Hop H, Millar R-M (2002) Lipid biomarkers and trophic linkages between ctenophores and copepods in Svalbard waters. Mar Ecol Prog Ser 227:187–194

    Article  CAS  Google Scholar 

  • Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  Google Scholar 

  • Graeve M (1992) Umsatz und Verteilung von Lipiden in arktischen marinen Organismen unter besonderer Berücksichtigung unterer trophischer Stufen. Ber Polarforsch 124:1–140

    Google Scholar 

  • Graeve M, Kattner G, Hagen W (1994) Diet-induced changes in the fatty acid composition of Arctic herbivorous copepods: experimental evidence of trophic markers. J Exp Mar Biol Ecol 182:97–110

    Article  CAS  Google Scholar 

  • Granhag L, Norrbin F, Haanes H, Henriksen J, Kolb J (2005) Feeding preference of the Arctic ctenophore Mertensia ovum. ASLO Aquatic Sciences Meeting, Santiago de Compostella, Spain

  • Hazel JR (1995) Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annu Rev Physiol 57:19–42

    Article  CAS  Google Scholar 

  • Hop H, Pearson T, Hegseth EN, Kovacs KM, Wiencke C, Kwasniewski S, Eiane K, Mehlum F, Gulliksen B, Wlodarska-Kowalczuk M, Lydersen C, Weslawski JM, Cochrane S, Gabrielsen GW, Leakey RJG, Lønne OJ, Zajaczkowski M, Falk-Petersen S, Kendall M, Wängberg S-Å, Bischof K, Voronkov AY, Kovaltchouk NA, Wiktor J, Poltermann M, di Prisco G, Papucci C, Gerland S (2002) The marine ecosystem of Kongsfjorden, Svalbard. Polar Res 21:167–208

    Article  Google Scholar 

  • Ju S-J, Scolardi K, Daly KL, Harvey HR (2004) Understanding the trophic role of the Antarctic ctenophore, Callinaria antarctica, using lipid biomarkers. Polar Biol 27:782–792

    Article  Google Scholar 

  • Kattner G, Fricke HSG (1986) Simple gas–liquid chromatographic method for the simultaneous determination of fatty acids and alcohols in wax esters of marine organisms. J Chromatogr 361:263–268

    Article  CAS  Google Scholar 

  • Kattner G, Graeve M (1991) Wax ester composition of the dominant calanoid copepods of the Greenland Sea/Fram Strait region. Polar Res 10:479–487

    Article  Google Scholar 

  • Kattner G, Krause M (1987) Changes in lipids during the development of Calanus finmarchicus s.l. from Copepodid I to adult. Mar Biol 96:511–518

    Article  CAS  Google Scholar 

  • Kattner G, Hirche H-J, Krause M (1989) Spatial variability in lipid composition of calanoid copepods from Fram Strait, the Arctic. Mar Biol 102:473–480

    Article  CAS  Google Scholar 

  • Kattner G, Hagen W, Graeve M, Albers C (1998) Exceptional lipids and fatty acids in the pteropod Clione limacina (Gastropoda) from both polar oceans. Mar Chem 61:219–228

    Article  CAS  Google Scholar 

  • Kwasniewski S, Hop H, Falk-Petersen S, Pedersen G (2003) Distribution of Calanus species in Kongsfjorden, a glacial fjord in Svalbard. J Plankton Res 25:1–20

    Article  CAS  Google Scholar 

  • Larson RJ, Harbison GR (1989) Source and fate of lipids in polar gelatinous zooplankton. Arctic 42:339–346

    Article  Google Scholar 

  • Lee RF, Hagen W, Kattner G (2006) Lipid storage in marine zooplankton. Mar Ecol Prog Ser 307:273–306

    Article  CAS  Google Scholar 

  • Leu E, Falk-Petersen S, Kwasniewski S, Wulf A, Edvardsen K, Hessen DO (2006) Fatty acid dynamics during the spring bloom in a high Arctic fjord: importance of abiotic factors versus community changes. Can J Fish Aquat Sci 63:2760–2779

    Article  CAS  Google Scholar 

  • Lundberg M, Hop H, Eiane K, Gulliksen B, Falk-Petersen S (2006) Population structure and accumulation of lipids in the ctenophore Mertensia ovum. Mar Biol 149:1344–1353

    Article  Google Scholar 

  • Nelson MM, Phleger CF, Mooney BD, Nichols PD (2000) Lipids of gelatinous Antarctic zooplankton: Cnidaria and Ctenophora. Lipids 35:551–559

    Article  CAS  Google Scholar 

  • Olsen RE, Henderson RJ (1989) The rapid analysis of neutral and polar marine lipids using double-development HPTLC and scanning densitometry. J Exp Mar Biol Ecol 129:189–197

    Article  CAS  Google Scholar 

  • Percy JA (1988) Influence of season, size, and temperature on the metabolism of an arctic cydippid ctenophore, Mertensia ovum (FABRICIUS). Sarsia 73:61–70

    Article  Google Scholar 

  • Percy JA (1989) Abundance, biomass, and size frequency distribution of an arctic ctenophore, Mertensia ovum (Fabricius) from Frobisher Bay, Canada. Sarsia 74:95–105

    Article  Google Scholar 

  • Percy JA, Fife FJ (1981) The biochemical composition and energy content of Arctic marine macrozooplankton. Arctic 34:307–313

    Article  Google Scholar 

  • Phleger CF, Nichols PD, Virtue P (1998) Lipids and trophodynamics of Antarctic zooplankton. Comp Biol Physiol 120B:311–323

    CAS  Google Scholar 

  • Raskoff KA, Purcell JE, Hopcroft RR (2005) Gelatinous zooplankton of the Arctic Ocean: in situ observations under the ice. Polar Biol 28:207–217

    Article  Google Scholar 

  • Sargent JR, Henderson RJ (1986) Lipids. In: Corner EDS, O’ Hara E (eds) Biological chemistry of marine copepods. University Press, Oxford, pp 59–108

    Google Scholar 

  • Scott CL, Kwasniewski S, Falk-Petersen S, Sargent JR (2000) Lipids and life strategy of Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus in late autumn, Kongsfjorden, Svalbard. Polar Biol 23:510–516

    Article  Google Scholar 

  • Scott CL, Kwasniewski S, Falk-Petersen S, Sargent JR (2002) Species differences, origins and functions of fatty alcohols and fatty acids in the wax esters and phospholipids of Calanus hyperboreus, C. glacialis and C. finmarchicus from Arctic waters. Mar Ecol Prog Ser 235:127–134

    Article  CAS  Google Scholar 

  • Siferd TD, Conover RJ (1992) Natural history of ctenophores in the Resolute Passage area of the Canadian High Arctic with special reference to Mertensia ovum. Mar Ecol Prog Ser 86:133–144

    Article  Google Scholar 

  • Swanberg N, Båmstedt U (1991) Ctenophora in the Arctic: the abundance, distribution and predatory impact of the cydippid ctenophore Mertensia ovum (Fabricius) in the Barents Sea. Polar Res 10:507–524

    Article  Google Scholar 

  • Tande KS, Henderson RJ (1988) Lipid composition of copepodite stages and adult females of Calanus glacialis in Arctic waters of the Barents Sea. Polar Biol 8:333–339

    Article  CAS  Google Scholar 

  • Walkusz W, Storemark K, Skau T, Gannefors C, Lundberg M (2003) Zooplankton community structure; a comparison of fjords, open water and ice stations in the Svalbard area. Pol Polar Res 24:149–165

    Google Scholar 

  • Willis K, Cottier F, Kwasniewski S, Wold A, Falk-Petersen S (2006) The influence of advection on zooplankton community composition in an Arctic fjord (Kongsfjorden, Svalbard). J Mar Syst 61:39–54

    Article  Google Scholar 

  • Wold A, Leu E, Walkusz W, Falk-Petersen S (2007) Lipids in copepodite stages of Calanus glacialis. Polar Biol 30:655–658

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the captain and crew of “Oceania”, RV Haakon Mosby and “Lance” and the staff of Kings Bay AS in Ny-Ålesund for their professional support during field experiments. We would like to thank Charlotte Gannefors, Anette Wold and Marthi Wolff for their important assistance. This work was supported by the Personnel Exchange Programme between the Research Council of Norway and Deutscher Akademischer Austauschdienst (DAAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Graeve.

Additional information

Communicated by M. Wahl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graeve, M., Lundberg, M., Böer, M. et al. The fate of dietary lipids in the Arctic ctenophore Mertensia ovum (Fabricius 1780). Mar Biol 153, 643–651 (2008). https://doi.org/10.1007/s00227-007-0837-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-007-0837-3

Keywords

Navigation