Skip to main content
Log in

Determination of canthaxanthin in the red coral (Corallium rubrum) from Marseille by HPLC combined with UV and MS detection

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Corallium rubrum is the most famous and precious coral due to the intense characteristic red colour of its skeleton. We have determined the presence of carotenoids in natural samples of C. rubrum from Marseille, Riou, and investigated their chemical composition. Analysis was performed both on soft tissues and hard tissues including spicules and skeleton. Since hard tissues are made of a mineral fraction and an organic fraction obtained after demineralization, extraction was performed both with and without demineralization by EDTA. The extracts were analyzed by complementary methods of TLC, HPLC/DAD and HPLC/MS. The components were separated by RP-18 chromatography column using acetonitrile/methanol for HPLC/DAD and acetonitrile/water gradient for HPLC/MS analysis. Our results give the first evidence of the presence of canthaxanthin, 4,4′-diketo-β-carotene, as the major carotenoid in all samples. Spicules exhibited higher content in carotenoids than skeleton. Demineralization treatment improved the efficiency of carotenoid extraction by an average factor of 5 and showed that organic matrix contains canthaxanthin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allemand D, Grillo M-C (1992) Biocalcification mechanisms in gorgonians. 45Ca uptake and deposition by the mediterranean red coral Corallium rubrum. J Exp Zool 292:237–246

    Article  Google Scholar 

  • Allemand D, Bénazet-Tambutté S (1996) Dynamics of calcification in the Mediterranean red coral, Corallium rubrum (Linnaeus) (Cnidaria, Octocorallia). J Exp Zool 276:270–278

    Article  Google Scholar 

  • Allemand D, Cuif J-P, Watabe N, Oishi M, Kawaguchi T (1994) The organic matrix of skeletal structures of the Mediterranean red coral, Corallium rubrum. In: Biomineralization 93–7th International Symposium on Biomineralization. Bulletin de l’Institut Océanographique, Monaco, pp 129–139

  • Beliaeff B, Gros P, Belin C, Raffin B, Gailhard I, Durbec JP (2001) Phytoplankton events in French coastal waters during 1987–1997. Oceanol Acta 24:425–433

    Article  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    Article  CAS  Google Scholar 

  • Bramanti L, Magagnini G, De Maio L, Santangelo G (2005) Recruitment, early survival and growth of the Mediterranean red coral Corallium rubrum (L 1758), a 4-year study. J Exp Mar Biol Ecol 314:69–78

    Article  Google Scholar 

  • Brown BE, Dunne RP, Ambarsari I, Le Tissier MDA, Satapoomin U (1999) Seasonal fluctuations in environmental factors and variations in symbiotic algae and chlorophyll pigments in four Indo-Pacific coral species. Mar Ecol Prog Ser 191:53–69

    Article  Google Scholar 

  • Cattaneo-Vietti R, Cicogna F (1993) Il corallo rosso: una risorsa mediterranea. In: Cigogna F, Cattaneo-Vietti R (eds) ll corallo rosso in Mediterraneo: arte, storia e scienza. Ministero delle Risorse agricole, alimentari e forestali, Massa Lubrense, Italy, pp 3–9

  • Cockell CS, Knowland J (1999) Ultraviolet radiation screening compounds. Biol Rev 74:311–345

    Article  CAS  Google Scholar 

  • Constantz B, Weiner S (1988) Acidic macromolecules associated with the mineral phase of scleractinian coral skeletons. J Exp Zool 248:253–258

    Article  CAS  Google Scholar 

  • Dauphin Y (2006) Mineralizing matrices in the skeletal axes of two Corallium species (Alcyonacea). Comp Biochem Physiol A 145(1):54–64

    Article  Google Scholar 

  • Dembinska-Kiec A (2005) Carotenoids: risk or benefit for health. Biochim Biophys Acta 1740:93–94

    Article  CAS  Google Scholar 

  • Fox D (1972) Pigmented calcareous skeletons of some corals. Comp Biochem Physiol B 43:919–927

    Article  CAS  Google Scholar 

  • Gailhard I (2003) Analyse de la variabilité spatio-temporelle des populations microalgales côtières observées par le “réseau de surveillance du phytoplancton et des phycotoxines” (REPHY). PhD Sciences de l’environnement marin, Aix-Marseille II, 187 p

  • Goldberg WM (1988) Chemistry, histochemistry and microscopy of the organic matrix of spicules from a gorgonian coral. Relationship to alcian blue staining and calcium binding. Histochem 69:163–170

    Article  Google Scholar 

  • Grigg RW (1993) Future prospects for coral reef science and species beyond the reef. Coral Reefs 12:55–56

    Article  Google Scholar 

  • Grillo M-C, Goldberg WM, Allemand D (1993) Skeleton and sclerite formation in the precious red coral Corallium rubrum. Mar Biol 117:119–128

    Article  Google Scholar 

  • Harmelin J-G (2000) Le Corail Rouge de Méditerranée : quelques aspects de sa biologie et de son écologie. In: Morel J-P, Rondi-Costanzo C, Ugolini D (eds) Corallo di Ieri, Corallo di Oggi. Edipuglia, Bari, pp 11–20

    Google Scholar 

  • Jeffrey S, Wright S, Zapata M (1999) Recent advances in HPLC pigment analysis of phytoplankton. Mar Freshw Res 50:879–896

    Article  CAS  Google Scholar 

  • Kingsley RJ, Watabe N (1983) Analysis of proteinaceous components of the organic matrices of spicules from the gorgonian Leptogorgia virgulata. Comp Biochem Physiol B 76:443–447

    Article  Google Scholar 

  • Kingsley RJ, Watabe N (1984) Synthesis and transport of the organic matrix of the spicules in the gorgonian Leptogorgia virgulata Lam. (coelenterata: gorgonacea). An autoradiographic investigation. Cell Tissue Res 235:533–538

    Article  CAS  Google Scholar 

  • Lacaze-Duthiers H (1864) Histoire naturelle du corail. J.B. Bailière et Fils, Paris, 371 p

    Google Scholar 

  • Liverino B (1989) The world of coral. From mythology to classification in the animal kingdom. In: Red Coral jewel of the sea. Analisi, Bologna, pp 9–22

    Google Scholar 

  • Marschal C, Garrabou J, Harmelin JG, Pichon M (2004) A new age determination method for the precious red coral Corallium rubrum (L.) (Gorgonacea: Octocorallia). Coral Reefs 23:423–432

    Article  Google Scholar 

  • Mateu G, Traveria A, Fontarnau R, Masso C (1986) Biodiagénesis mineralògica del Corallium rubrum (L). Bol Inst Esp Oceanogr 3:1–12

    Google Scholar 

  • Matsuno T (2001) Aquatic animal carotenoids. Fish Sci 67:771–783

    Article  CAS  Google Scholar 

  • McGraw KJ (2006) Mechanics of carotenoid-based coloration. In: Hill GE, McGraw KJ (eds) Bird coloration, mechanisms and measurements. Harvard University Press, Cambridge, pp 177–242

    Google Scholar 

  • Merlin J (1985) Resonance Raman spectroscopy of carotenoids and carotenoid-containing systems. Pure Appl Chem 57:785–792

    Article  CAS  Google Scholar 

  • Merlin JC, Delé ML (1983) Etude par spectroscopie Raman de résonance de la pigmentation des squelettes calcaires de certains coraux. Bull Soc Zool France 108:289–301

    CAS  Google Scholar 

  • Merlin JC, Delé-Dubois ML (1986) Resonance Raman characterization of polyacetylenic pigments in the calcareous skeleton. Comp Biochem Physiol B 84:97–103

    Article  Google Scholar 

  • Mobley KB, Gleason DF (2003) The effect of light and heterotrophy on carotenoid concentrations in the Caribbean anemone Aiptasia pallida (Verrill). Mar Biol 143:629–637

    Article  CAS  Google Scholar 

  • Nelis HJCF, Lavens P, Moens L, Sorgeloos P, Jonckheere JA, Criel GR, De Leenheer AP (1984) cis-canthaxanthins. Unusual carotenoids in the eggs and the reproductive system of female brine shrimp Artemia. J Biol Chem 259:6063–6066

    CAS  PubMed  Google Scholar 

  • Nelis HJCF, Lavens P, Van Steenberge MMZ, Sorgeloos P, Criel GR, De Leenheer AP (1988) Qualitative and quantitative changes in the carotenoids during development of the brine shrimp Artemia. J Lipid Res 29:491–499

    CAS  PubMed  Google Scholar 

  • Picciano ML, Ferrier-Pagès C (2007) Ingestion of pico- and nanoplankton by the Mediterranean red coral Corallium rubrum. Mar Biol 150:773–782

    Article  Google Scholar 

  • Ranson G, Durivault A (1937) Le pigment d’Heliopora coerulea et de quelques autres alcyonnaires. C R Soc Biol Paris 126:1149–1151

    CAS  Google Scholar 

  • Santangelo G, Bongiorni L, Giannini F, Abbiati M, Buffoni G (1997) Structure analysis of two red coral populations dwelling in different habitats. In: Cigogna F. BG, Cattaneo-Vietti R. (eds) Red coral and other Mediterranean octocorals: biology and protection, pp 23–43

  • Stahl W, Sies H (2005) Bioactivity and protective effects of natural carotenoids. Biochim Biophys Acta 1740:101–107

    Article  CAS  Google Scholar 

  • Tsounis G, Rossi S, Laudien J, Bramanti L, Fernandez N, Gili J-M, Arntz W (2006) Diet and seasonal prey capture rates in the Mediterranean red coral (Corallium rubrum L.). Mar Biol 149:313–125

    Article  Google Scholar 

  • Urmos J, Sharma SK, Mackenzie FT (1991) Characterization of some biogenic carbonates with Raman spectroscopy. Am Mineralogist 76:641–646

    CAS  Google Scholar 

  • Van Heukelem L, Thomas CS (2001) Computer-assisted high-performance chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J Chrom 910:31–49

    Article  CAS  Google Scholar 

  • von Linting J, Hessel S, Isken A, Kiefer C, Lampert JM, Voolstra O, Vogt K (2005) Towards a better understanding of carotenoid metabolism in animals. Biochim Biophys Acta 1740:122–131

    Article  Google Scholar 

  • Weinberg S (1978) Mediterranean octocorallian communities and the abiotic environment. Mar Biol 49:41–57

    Article  Google Scholar 

  • Zibrowius H, Monteiro Marques V, Grasshoff M (1984) La répartition du Corallium rubrum dans l’Atlantique (Cnidaria: Anthozoa: Gorgonaria). Tethys 11:163–170

    Google Scholar 

Download references

Acknowledgments

We thank Dominique Prudon, Catherine Balme and DIMAR for providing coral samples. We are grateful to Dominique Desgré for coral maintenance. We thank Christine Ferrier-Pagès, Natacha Caminiti, Eric Tambutté, Aurélie Moya and Didier Zoccola for fruitful discussions. This study was conducted as part of the Centre Scientifique de Monaco research program, funded by the Government of the Principality of Monaco and by the Company Van Cleef and Arpels. The Company Van Cleef and Arpels supports the research on red coral through an agreement established with the Centre Scientifique de Monaco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Tambutté.

Additional information

Communicated by O. Kinne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cvejic, J., Tambutté, S., Lotto, S. et al. Determination of canthaxanthin in the red coral (Corallium rubrum) from Marseille by HPLC combined with UV and MS detection. Mar Biol 152, 855–862 (2007). https://doi.org/10.1007/s00227-007-0738-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-007-0738-5

Keywords

Navigation