Skip to main content
Log in

Variation in biometry and population density of solitary corals with solar radiation and sea surface temperature in the Mediterranean Sea

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The correlation between two environmental factors (solar radiation and sea surface temperature), biometry, and population density was assessed along a latitudinal gradient in the zooxanthellate coral Balanophyllia europaea and in the azooxanthellate coral Leptopsammia pruvoti. With increasing polyp size, the oral disc of B. europaea assumed an oval shape, while that of L. pruvoti retained a circular shape. In both species, biometric parameters varied more with temperature than with solar radiation. In the zooxanthellate species, temperature explained a higher percentage of biometric parameter variance than in the azooxanthellate species. While environmental factors did not co-vary with demographic characteristics in L. pruvoti, temperature was negatively related to the population density of B. europaea. It is hypothesized that the negative effect of temperature on biometry and population density of B. europaea depends on photosynthesis inhibition of symbiotic zooxanthellae at high temperatures, which would lower the calcification rate and availability of energetic resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Horani FA (2005) Effects of changing seawater temperature on photosynthesis and calcification in the scleractinian coral Galaxea fascicularis, measured with O2, Ca2+ and pH microsensors. Sci Mar 69:347–354

    Article  CAS  Google Scholar 

  • Al-Horani FA, Ferdelman T, Al-Moghrabi SM, de Beer D (2005) Spatial distribution of calcification and photosynthesis in the scleractinian coral Galaxea fascicularis. Coral Reefs 24:173–180

    Article  Google Scholar 

  • Altman DG (1991) Practical statistics for medical research. Chapman & Hall, London

    Google Scholar 

  • Bablet JP (1985) Report on the growth of a scleractinia (Fungia paumotensis). In: Proceedings of the 5th International Coral Reef Symposium 4:361–365

  • Bell JJ, Turner JR (2000) Factors influencing the density and morphometrics of the cup coral Caryophyllia smithii in Lough Hyne. J Mar Biol Assoc UK 80:437–441

    Article  Google Scholar 

  • Carlon DB (2002) Production and supply of larvae as determinants of zonation in a brooding tropical coral. J Exp Mar Biol Ecol 268:33–46

    Article  Google Scholar 

  • Carricart-Ganivet JP (2004) Sea surface temperature and the growth of the West Atlantic reef-building coral Montastraea annularis. J Exp Mar Biol Ecol 302:249–260

    Article  Google Scholar 

  • Coma R, Ribes M (2003) Seasonal energetic constraints in Mediterranean benthic suspension feeders: effects at different levels of ecological organization. Oikos 101:205–215

    Article  Google Scholar 

  • Coma R, Ribes M, Gili JM, Zabala M (2000) Seasonality in coastal ecosystems. Trends Ecol Evol 12:448–453

    Article  Google Scholar 

  • Crossland CJ (1981) Seasonal growth of Acropora cf. formosa and Pocillopora damicornis on a high latitude reef (Houtman Abrolhos, Western Australia). In: Proceedings of the 4th International Coral Reef Symposium 1:663–667

  • Dodge RE, Brass GW (1984) Skeletal extension, density and calcification of the reef coral Montastrea annularis: St Croix, US Virgin Islands. Bull Mar Sci 34:288–307

    Google Scholar 

  • Gabriel KR, Lachenbruch PA (1969) Non-parametric ANOVA in small samples: a Monte Carlo study of the adequacy of the asymptotic approximation. Biometrics 25:593–596

    Article  Google Scholar 

  • Gattuso JP, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interaction and control by carbonate chemistry. Am Zool 39:160–183

    Article  CAS  Google Scholar 

  • Gerrodette T (1981) Dispersal of the solitary coral Balanophyllia elegans by demersal planular larvae. Ecology 62:611–619

    Article  Google Scholar 

  • Goffredo S, Arnone S, Zaccanti F (2002) Sexual reproduction in the Mediterranean solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Mar Ecol Prog Ser 229:83–94

    Article  Google Scholar 

  • Goffredo S, Chadwick-Furman NE (2003) Comparative demography of mushroom corals (Scleractinia, Fungiidae) at Eilat, northern Red Sea. Mar Biol 142:411–418

    Article  Google Scholar 

  • Goffredo S, Zaccanti F (2004) Laboratory observations of larval behavior and metamorphosis in the Mediterranean solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Bull Mar Sci 74:449–458

    Google Scholar 

  • Goffredo S, Mattioli G, Zaccanti F (2004) Growth and population dynamics model of the Mediterranean solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Coral Reefs 23:433–443

    Article  Google Scholar 

  • Goffredo S, Airi V, Radetić J, Zaccanti F (2006) Sexual reproduction of the solitary sunset cup coral Leptopsammia pruvoti (Scleractinia: Dendrophylliidae) in the Mediterranean. 2. Quantitative aspects of the annual reproductive cycle. Mar Biol 148:923–932

    Article  Google Scholar 

  • Grigg RW (1982) Darwin point: a threshold for atoll formation. Coral Reefs 1:29–34

    Article  Google Scholar 

  • Harriott VJ (1999) Coral growth in subtropical eastern Australia. Coral Reefs 15:281–291

    Article  Google Scholar 

  • Harriott VJ, Banks SA (2002) Latitudinal variation in coral communities in eastern Australia: a qualitative biophysical model of factors regulating coral reefs. Coral Reefs 21:83–94

    Article  Google Scholar 

  • Hoeksema BW (1991) Evolution of body size in mushroom corals (Scleractinia: Fungiidae) and its ecomorphological consequences. Neth J Zool 41:112–129

    Article  Google Scholar 

  • Houlbrèque F, Tambuttè E, Allemand D, Ferrier-Pagès C (2004) Interactions between zooplankton feeding, photosynthesis and skeletal growth in the scleractinian coral Stylophora pistillata. J Exp Biol 207:1461–1469

    Article  Google Scholar 

  • Howe SA, Marshall AT (2002) Temperature effects on calcification rate and skeletal deposition in the temperate coral, Plesiastrea versipora (Lamarck). J Exp Mar Biol Ecol 275:63–81

    Article  CAS  Google Scholar 

  • Hughes TP, Baird AH, Dinsdale EA, Moltschaniwskyj NA, Pratchett MS, Tanner JE, Willis BL (2000) Supply-side ecology works both ways: the link between benthic adults, fecundity, and larval recruits. Ecology 81:2241–2249

    Article  Google Scholar 

  • Jacques TG, Marshall N, Pilson MEQ (1983) Experimental ecology of the temperate scleractinian coral Astrangia danae: II. Effect of temperature, light intensity and symbiosis with zooxanthellae on metabolic rate and calcification. Mar Biol 76:135–148

    Article  CAS  Google Scholar 

  • Kain JM (1989) The seasons in the subtidal. Br Phycol J 24:203–215

    Article  Google Scholar 

  • Kinsey DW, Davies PJ (1979) Carbon turnover calcification and growth in coral reefs. In: Trudinger PA, Swaine DJ (eds) Biogeochemical cycling of mineral forming elements. Elsevier, Amsterdam, pp 131–162

    Chapter  Google Scholar 

  • Kleypas JA, McManus JW, Menez LAB (1999) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159

    Article  Google Scholar 

  • Lough JM, Barnes DJ (2000) Environmental controls on growth of the massive coral Porites. J Exp Mar Biol Ecol 245:225–243

    Article  CAS  Google Scholar 

  • Peirano A, Abbate M, Cerrati G, Difesca V, Peroni C, Rodolfo-Metalpa R (2005a) Monthly variations in calyx growth, polyp tissue, and density banding of the Mediterranean scleractinian Cladocora caespitosa (L.). Coral Reefs 24:404–409

    Article  Google Scholar 

  • Peirano A, Damasso V, Montefalcone M, Morri C, Bianchi CN (2005b) Effects of climate, invasive species and anthropogenic impacts on the growth of the seagrass Posidonia oceanica (L.) Delile in Liguria (NW Mediterranean Sea). Mar Pollut Bull 50:817–822

    Article  CAS  Google Scholar 

  • Potvin C, Roff DA (1993) Distribution-free and robust statistical methods: viable alternatives to parametric statistics? Ecology 74:1617–1628

    Article  Google Scholar 

  • Rinkevich B (1989) The contribution of photosynthetic products to coral reproduction. Mar Biol 101:259–263

    Article  CAS  Google Scholar 

  • Rosenfeld M, Bresler V, Abelson A (1999) Sediment as a possible source of food for corals. Ecol Lett 2:345–348

    Article  Google Scholar 

  • Senchaudhuri P, Mehta CR, Patel NR (1995) Estimating exact p-values by the method of control variates, or Monte Carlo rescue. J Am Stat Assoc 90:640–648

    Google Scholar 

  • Stafford-Smith MG, Ormond RFG (1992) Sediment-rejection mechanisms of 42 species of Australian Scleractinian. Aust J Mar Freshw Res 43:683–705

    Article  Google Scholar 

  • Steel RGD (1980) Principles and procedures of statistics: a biometrical approach, 2nd edn. McGraw-Hill College, New York

    Google Scholar 

  • Stimson J (1996) Wave-like outward growth of some table- and plate-forming corals, and a hypothetical mechanism. Bull Mar Sci 58:301–313

    Google Scholar 

  • Virgilio M, Airoldi L, Abbiati M (2006) Spatial and temporal variations of assemblages in a Mediterranean coralligenous reef and relationships with surface orientation. Coral Reefs 25:265–272

    Article  Google Scholar 

  • Vongsavat V, Winotai P, Meejoo S (2006) Phase transitions of natural corals monitored by ESR spectroscopy. Nucl Instr Meth B 243:167–173

    Article  CAS  Google Scholar 

  • Yamashiro H, Nishihira M (1998) Experimental study of growth and asexual reproduction in Diaseris distorta (Michelin, 1843), a free-living fungiid coral. J Exp Mar Biol Ecol 225:253–267

    Article  Google Scholar 

  • Zibrowius H (1980) Les scléractiniaires de la Méditerranée et de l’Atlantique nord-oriental. Mem Inst Oceanogr (Monaco) 11:1–284

    Google Scholar 

Download references

Acknowledgments

We wish to thank L. Bortolazzi, M. Ghelia, G. Neto, and L. Tomesani for their underwater assistance in collecting the samples. The diving centers Centro Immersioni Pantelleria, Il Pesciolino, Polo Sub, and Sub Maldive supplied logistic assistance in the field. The Bologna Scuba Team collaborated in the underwater activities. The Marine Science Group (http://www.marinesciencegroup.org) supplied scientific, technical, and logistical support. H. R. Lasker, J. Bilewitch, and N. Kirk (State University of New York at Buffalo), N. E. Chadwick-Furman (Auburn University), and two anonymous reviewers gave comments that improved the manuscript. This research was financed by the Associazione dei Tour Operator Italiani (ASTOI), the Marine and Freshwater Science Group Association (http://www.msgassociation.net), the Canziani foundation of the Department of Evolutionary and Experimental Biology of the Alma Mater Studiorum—University of Bologna, and the Ministry of Education, University and Research (MIUR). The experiments complied with current Italian law.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Goffredo.

Additional information

Communicated by R. Cattaneo-Vietti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goffredo, S., Caroselli, E., Pignotti, E. et al. Variation in biometry and population density of solitary corals with solar radiation and sea surface temperature in the Mediterranean Sea. Mar Biol 152, 351–361 (2007). https://doi.org/10.1007/s00227-007-0695-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-007-0695-z

Keywords

Navigation