Marine Biology

, Volume 151, Issue 6, pp 2025–2035 | Cite as

Patterns of spatial variability of seagrass epiphytes in the north-west Mediterranean Sea

  • David BalataEmail author
  • Ugo Nesti
  • Luigi Piazzi
  • Francesco Cinelli
Research Article


This study aimed to gain insight on patterns of spatial variability of seagrass epiphytes of both leaves and of rhizomes in three different habitats, continental coasts, offshore banks and islands. Moreover, we tried to discriminate between habitat-dependant variability and scale-dependant variability of Posidonia oceanica epiphytic assemblages. Results showed the absence of significant differences in the structure of assemblages of epiphytes both on leaves and on rhizomes among continental coasts, offshore banks and islands, even if the patterns of spatial variability changed among habitats. In fact, although a high variability at small scales appeared a constant pattern in epiphytic assemblages, large-scale variability resulted higher in continental coasts and offshore banks than in islands. In conclusion, epiphytic assemblages of Posidonia oceanica appear homogeneous among habitats, showing a similar structure and species composition in the same geographic area. On the contrary, differences between meadows appeared linked to local differences in environmental factors that are more evident in habitats influenced by human disturbance.


Seagrass Meadow Continental Coast Total Percentage Cover Offshore Bank Bank Habitat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We wish to thank I. Bertocci, for his valuable contribution to the present work, and M. Walker for English revision. We are grateful to L. Foresi and A. De Biasi for their help in the identification of doubtful taxa.


  1. Anderson MJ (2001a) A new method for a non-parametric multivariate analysis of variance. Aust Ecol 26:32–46Google Scholar
  2. Anderson MJ (2001b) Permutation tests for univariate or multivariate analysis of variance and regression. Can J Fish Aquat Sci 58:629–636Google Scholar
  3. Benedetti-Cecchi L (2001a) Scales of variation in the effects of limpets on rocky shores in the northwest Mediterranean. Mar Ecol Prog Ser 209:131–141CrossRefGoogle Scholar
  4. Benedetti-Cecchi L (2001b) Variability in abundance of algae and invertebrates at different spatial scales on rocky sea shores. Mar Ecol Prog Ser 215:79–92CrossRefGoogle Scholar
  5. Benedetti-Cecchi L, Pannacciulli F, Bulleri F, Morchella PS, Airoldi L, Relini G, Cinelli F (2001) Predicting the consequences of anthropogenic disturbance: large-scale effects of loss of canopy algae on rocky shores. Mar Ecol Prog Ser 214:137–150CrossRefGoogle Scholar
  6. Benedetti-Cecchi L, Maggi E, Bertocci I, Vaselli S, Micheli S, Osio GC, Cinelli F (2003) Variation in rocky shore assemblages in the northwestern Mediterranean: contrasts between islands and the mainland. J Exp Mar Biol Ecol 293:193–215CrossRefGoogle Scholar
  7. Borowitzka MA, Lethbridge RC (1989) Seagrass epiphytes. In: Larkum WD, McComb AJ, Sheperd SA (eds) Biology of seagrasses. A treatise on biology of seagrasses with special reference to Australian region. Elsevier, Amsterdam, pp 458–499Google Scholar
  8. Borowitzka MA, Lethbridge RC, Charlton L (1990) Species richness, spatial distribution and colonization pattern of algal and invertebrate epiphyte on the seagrass Amphybolis griffithsii. Mar Ecol Prog Ser 64:281–291CrossRefGoogle Scholar
  9. Borum J (1985) Development of epiphytic communities on eelgrass (Zostera marina) along a nutrient gradient in a Danish estuary. Mar Biol 87:211–218CrossRefGoogle Scholar
  10. Boudouresque CF (1974) Recherches sur la bionomie analityque structurale et expérimentale sur les peuplements benthiques sciaphiles de Méditerranée occidentale (fraction algale): le peuplement épiphyte des rhizomes de posidonies (Posidonia oceanica Delile). Bull Mus Hist Nat Mars 34:268–282Google Scholar
  11. Cambridge ML, Hocking PJ (1997) Annual primary production and nutrient dynamics af seagrasses Posidonia sinuosa and Posidonia australis in south-western Australia. Aquat Bot 59:277–295CrossRefGoogle Scholar
  12. Dufrene M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Mongr 67:345–366Google Scholar
  13. Frankovich TA, Fourqureau JW (1997) Seagrass epiphyte loads along a nutrient availability gradient, Florida Bay, USA. Mar Ecol Prog Ser 159:37–50CrossRefGoogle Scholar
  14. Fraschetti S, Terlizzi A, Benedetti-Cecchi L (2005) Patterns of distribution of marine assemblages from rocky shore: evidence of relevant scales of variation. Mar Ecol Prog Ser 296:13–29CrossRefGoogle Scholar
  15. Heijs FM (1984) Annual biomass and production of epiphytes in three monospecific seagrass communities of Thalassia hemprichii (Ehrenb.) Aschers. Aquat Bot 20:195–218CrossRefGoogle Scholar
  16. Heijs FM (1985a) The seasonal distribution and community structure of the epiphytic algae on Thalassia hemprichii (Eehrenb.) Aschers. From Papua New Guinea. Aquat Bot 21:295–324CrossRefGoogle Scholar
  17. Heijs FM (1985b) Some structural and functional aspects of the epiphytic component of four seagrass species (Cymodoceae) from Papua New Guinea. Aquat Bot 23:225–247CrossRefGoogle Scholar
  18. Hewitt JE, Thrush E, Cummings VJ (2001) Assessing environmental impacts: effects of spatial and temporal variability at likely impact scales. Ecol Appl 11:1502–1516CrossRefGoogle Scholar
  19. Kendrick GA, Burt JS (1997) Seasonal changes in epiphyte macro-algal assemblages between offshore exposed and inshore protected Posidonia sinuosa Cambridge et Kuo seagrass meadows, Western Australia. Bot Mar 40:77–85Google Scholar
  20. Kendrick GA, Walker DI, McComb AJ (1988) Changes in distribution of macro-algal epiphytes on stems of the seagrass Amphibolis anctartica along a salinity gradient in Shark Bay, Western Australia. Phycologia 27:201–208CrossRefGoogle Scholar
  21. Klumpp DW, Salita-Espinosa JS, Fortes MD (1992) The role of epiphytic periphyton and macroinvertebrate grazers in the trophic flux of a tropical seagrass community. Aquat Bot 45:327–349CrossRefGoogle Scholar
  22. Lavery PS, Vanderklift MA (2002) A comparison of spatial and temporal patterns in epiphytic macroalgal assemblages of the seagrasses Amphibolis griffithii and Posidonia coriacea. Mar Ecol Prog Ser 236:99–112CrossRefGoogle Scholar
  23. May V (1982) The use of epiphytic algae to indicate environmental changes. Aust J Ecol 7:101–102CrossRefGoogle Scholar
  24. Mazzella L, Scipione MB, Buia M (1989) Spatio-temporal distribution of algal and animal communities in a Posidonia oceanica (L.) Delile meadow. PSZN Mar Ecol 10:107–131CrossRefGoogle Scholar
  25. Mazzella L, Buia MC, Gambi MC, Lorenti M, Russo GF, Scipione MB, Zupo V (1992) Plant–animal trophic relationships in the Posidonia oceanica ecosystem of Mediterranean Sea: a review. In: John DM, Hawkins SJ, Price JH (eds) Plant–animal interactions in the marine benthos. Systematic association special volume. Clarendon Press, Oxford, pp 165–187Google Scholar
  26. Moncreiff CA, Sullivan MJ, Daehnick AE (1992) Primary production dynamics in seagrass beds of Mississippi Sound: the contributions of seagrass, epiphytic algae, sand microflora and phytoplankton. Mar Ecol Prog Ser 87:161–171CrossRefGoogle Scholar
  27. Nelson TA, Waaland JR (1997) Seasonality of eelgrass, epiphyte, and grazer biomass and productivity in subtidal eelgrass meadows subjected to moderate tidal amplitude. Aquat Bot 56:51–74CrossRefGoogle Scholar
  28. Panayotidis P (1980) Contribution à l’étude qualitative et quantitative de l’association Posidonietum oceanicae Funk 1927. Thèse de Doctorat, Université Aix-Marseille IIGoogle Scholar
  29. Pansini M, Pronzato R (1985) Distribution and ecology of epiphytic Porifera in two Posidonia oceanica (L.) Delile meadows of the Ligurian and Tyrrhenian Sea. PSZN Mar Ecol 6:1–11CrossRefGoogle Scholar
  30. Pergent G, Romero J, Pergent-Martini C, Mateo MA, Boudouresque CF (1994) Primary production, stocks and fluxes in the Mediterranean seagrass Posidonia oceanica. Mar Ecol Prog Ser 106:139–146CrossRefGoogle Scholar
  31. Pergent G, Pergent-Martini C, Boudouresque CF (1995) Utilisation de l’herbier a Posidonia oceanica comme indicateur biologique de la qualite du milieu littoral en mediterranee: etat des connaissances. Mésogée 54:3–27Google Scholar
  32. Piazzi L, Cinelli F (2001) The distribution and dominance of two introduced turf-forming macroalgae in the coast of Tuscany (Italy, northwestern Mediterranean) in relation to different habitats and sedimentation. Bot Mar 44:509–520CrossRefGoogle Scholar
  33. Piazzi L, Cinelli F (2003) Evaluation of benthic macroalgal invasion in a harbour area of the western Mediterranean Sea. Eur J Phycol 38:223–231CrossRefGoogle Scholar
  34. Piazzi L, Balata D, Cinelli F (2002) Epiphytic macroalgal assemblages of Posidonia oceanica rhizomes in the western Mediterranean. Eur J Phycol 37:69–76CrossRefGoogle Scholar
  35. Piazzi L, Balata D, Cinelli F, Benedetti-Cecchi L (2004a) Patterns of spatial variability in epiphytes of Posidonia oceanica. Differences between a disturbed and two references locations. Aquat Bot 79:345–356CrossRefGoogle Scholar
  36. Piazzi L, Balata D, Pertusati M, Cinelli F (2004b) Mediterranean coralligenous phytobenthic assemblages: temporal dynamics and influence of substrate inclination. Bot Mar 47:105–115CrossRefGoogle Scholar
  37. Reyes J, Sansòn M, Afonso-Carrillo J (1998) Distribution of the epiphytes along the leaves of Cymodocea nodosa in the Canary Islands. Bot Mar 41:543–551CrossRefGoogle Scholar
  38. Saunders JM, Attrill MJ, Shaw SM, Rowden AA (2003) Spatial variability in the epiphytic algal assemblages of Zostera marina seagrass beds. Mar Ecol Prog Ser 249:107–115CrossRefGoogle Scholar
  39. Trautman DA, Borowitzka MA (1999) Distribution of the epiphytic organisms on Posidonia australis and P. sinuosa, two seagrasses with differing leaf morphology. Mar Ecol Prog Ser 179:215–229CrossRefGoogle Scholar
  40. Underwood AJ (1997) Experiments in ecology. Their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge, pp 504Google Scholar
  41. Underwood AJ, Chapman MG (1996) Scales of spatial patterns of distribution of intertidal invertebrates. Oecologia 107:212–224CrossRefGoogle Scholar
  42. Vanderklift MA, Lavery PS (2000) Patchiness in assemblages of epiphytic macroalgae on Posidonia coriacea at a hierarchy of spatial scales. Mar Ecol Prog Ser 192:127–135CrossRefGoogle Scholar
  43. Van Elven BR, Lavery PS, Kendrick GA (2004) Reefs as contributors to diversity of epiphytic macroalgae assemblages in seagrass meadows. Mar Ecol Prog Ser 276:71–83CrossRefGoogle Scholar
  44. Walker DI, Mc Comb AJ (1988) Seasonal variation in the production, biomass and nutrient status of Amphibolis anctartica (Labill) Sonder ex Aschers. and Posidonia australis Hook. F. in Shark Bay, Western Australia. Aquat Bot 31:259–275CrossRefGoogle Scholar
  45. Whittaker RJ (1998) Island biogeography: ecology, evolution and conservation. Oxford University Press, New York, pp 285Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • David Balata
    • 1
    Email author
  • Ugo Nesti
    • 2
  • Luigi Piazzi
    • 3
  • Francesco Cinelli
    • 3
  1. 1.University of PisaPisaItaly
  2. 2.I.C.R.A.M.RomeItaly
  3. 3.Dipartimento di BiologiaUniversità di PisaPisaItaly

Personalised recommendations