Skip to main content

Advertisement

Log in

The indirect effects of eutrophication on habitat choice and survival of fish larvae in the Baltic Sea

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The structure of the habitat is usually crucial for growth and survival of young life stages. Presently, some nursery areas of fish larvae are changing due to eutrophication, e.g. due to enhanced growth of ephemeral filamentous algae at the expense of perennial species. We studied the influence of two habitats, one with filamentous algae (Cladophora glomerata) and the other with bladder wrack (Fucus vesiculosus), on habitat choice of pike larvae (Esox lucius) in the absence/presence of a predator or a competitor. We further tested whether the habitat choice is adaptive in increasing survival under predation threat. In contrast to expectations, pike larvae preferred the habitat with ephemeral filamentous algae to the bladder wrack, thriving in clean waters, independent of the presence/absence of both predator/competitor. In addition, the survival of the larvae was higher in the filamentous algae in the presence of predators, which suggested that the habitat preference of the larvae was adaptive. The structure of the bladderwrack habitat was probably too open for newly hatched larvae, which implies that F. vesiculosus and other large brown algae are not as important refuges for young larvae as previously thought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amaral ACZ, Jablonski S (2005) Conservation of marine and coastal biodiversity in Brazil. Cons Biol 19:625–631

    Article  Google Scholar 

  • Aneer G (1987) High natural mortality of Baltic herring (Clupea harengus) eggs caused by algal exudates? Mar Biol 94:163–169. DOI 10.1007/BF00392928

    Article  Google Scholar 

  • Armbruster P, Lande R (1993) A population viability analysis for African elephant (Loxodonta africana)—how big should reserves be? Cons Biol 7:602–610

    Article  Google Scholar 

  • Borg Å, Pihl L, Wennhage H (1997) Habitat choice by juvenile cod (Gadus morhua L.) on sandy soft bottoms with different vegetation types. Helgoländer Meeresunters 51:197–212

    Article  Google Scholar 

  • Candolin U, Voigt H-R (1998) Predator-induced nest site preference: safe nests allow courtship in sticklebacks. Anim Behav 56:1205-1211. DOI 10.1006/anbe.1998.0892

    Article  CAS  Google Scholar 

  • Casselman JM (1996) Age, growth and environmental requirements of pike. In: Craig JF (ed) Pike—biology and exploitation. Chapman & Hall, London, pp 70–101

    Google Scholar 

  • Casselman JM, Lewis CA (1996) Habitat requirements of northern pike (Esox lucius). Can J Fish Aquat Sci 53(Suppl 1):161–174

    Article  Google Scholar 

  • Connor EF, McCoy ED (1979) The statistics and biology of the species–area relationship. Am Nat 113:791–833

    Article  Google Scholar 

  • Craig JF (ed) (1996) Pike—biology and exploitation, 1st edn. Chapman & Hall, London

  • Craig JF, Babaluk JA (1989) Relationship of condition of walleye (Stizostedion vitreum) and northern pike (Esox lucius) to water clarity, with special reference to Dauphin Lake, Manitoba. Can J Fish Aquat Sci 46:1581–1586

    Article  Google Scholar 

  • Diehl S (1988) Foraging efficiency of three freshwater fishes: effects of structural complexity and light. Oikos 53:207–214

    Article  Google Scholar 

  • Downes BJ, Lake PS, Schreiber ESG, Glaister A (1998) Habitat structure and regulation of local species diversity in a stony, upland stream. Ecol Monogr 68:237–257

    Article  Google Scholar 

  • Eklöv P, Diehl S (1994) Piscivore efficiency and refuging prey: the importance of predator search mode. Oecologia 98:344–353. DOI 10.1007/BF00324223

    Article  Google Scholar 

  • Engström-Öst J, Isaksson I (2006) Effects of macroalgal exudates and oxygen deficiency on survival and behaviour of fish larvae. J Exp Mar Biol Ecol 335:227–234. DOI 10.1016/j.jembe.2006.03.007

    Article  Google Scholar 

  • Engström-Öst J, Lehtiniemi M (2004) Threat-sensitive predator avoidance by pike larvae. J Fish Biol 65:251–261. DOI 10.1111/j.0022-1112.2004.00448.x

    Article  Google Scholar 

  • Engström-Öst J, Lehtiniemi M, Jónasdóttir SH, Viitasalo M (2005) Growth of pike larvae (Esox lucius) under different conditions of food quality and salinity. Ecol Freshwat Fish 14:385–393. DOI 10.1111/j.1600-0633.2005.00113.x

    Article  Google Scholar 

  • Flynn AJ, Ritz DA (1999) Effect of habitat complexity and predator style on capture success of fish feeding on aggregated prey. J Mar Biol Ass UK 79:487–494

    Article  Google Scholar 

  • Isaksson I, Pihl L (1992) Structural changes in benthic macrovegetation and associated epibenthic faunal communities. Neth J Sea Res 30:131–140

    Article  Google Scholar 

  • Isaksson I, Pihl L, van Montfrans J (1994) Eutrophication-related changes in macrovegetation and foraging of young cod (Gadus morhua L.): a mesocosm experiment. J Exp Mar Biol Ecol 177:203–217. DOI 10.1016/0022-0981(94)90237-2

    Article  Google Scholar 

  • Johnson DA, Welsh BL (1985) Detrimental effects of Ulva lactuca (L.) exudates and low oxygen on estuarine crab larvae. J Exp Mar Biol Ecol 86:73–83. DOI 10.1016/0022-0981(85)90043-7

    Article  Google Scholar 

  • Kohn AJ, Leviten PJ (1976) Effect of habitat complexity on population density and species richness in tropical intertidal predatory gastropod assemblages. Oecologia 25:199–210. DOI 10.1007/BF00345098

    Article  Google Scholar 

  • Koivula K, Rönkä A (1998) Habitat deterioration and efficiency of antipredator strategy in a meadow-breeding wader, Temminck’s stint (Calidris temminckii). Oecologia 116:348–355. DOI 10.1007/s004420050597

    Article  CAS  Google Scholar 

  • Lappalainen A (2002) The effects of recent eutrophication on freshwater fish communities and fishery on the northern coast of the Gulf of Finland, Baltic Sea. PhD Thesis, University of Helsinki, 24 p

  • Leger DW, Didrichsons IA (1994) An assessment of data pooling and some alternatives. Anim Behav 48:823–832. DOI 10.1006/anbe.1994.1306

    Article  Google Scholar 

  • Lehtiniemi M (2005) Swim or hide—predator cues cause species specific reactions in young fish larvae. J Fish Biol 66:1285–1299. DOI 10.1111/j.0022-1112.2005.00681.x

    Article  Google Scholar 

  • Lehtonen H (1986) Fluctuations and long-term trends in the pike Esox lucius (L.) population in Nothamn, western Gulf of Finland. Aqua Fenn 16:3–9

    Google Scholar 

  • Lemmetyinen R, Mankki J (1975) The three-spined stickleback (Gasterosteus aculeatus) in the food chain of the northern Baltic Sea. Merentutkimuslait Julk/Havsforskningsinst Skr 239:155–161

    Google Scholar 

  • Lindén E, Lehtiniemi M, Viitasalo M (2003) Predator avoidance behaviour of Baltic littoral mysids Neomysis integer and Praunus flexuosus. Mar Biol 143:845–850. DOI 10.1007/s00227-003-1149-x

    Article  Google Scholar 

  • Milinski M (1986) Constraints placed by predators on feeding behaviour. In: Pitcher TJ (ed) The behaviour of teleost fishes. John Hopkins University Press, Baltimore, pp 236–252

    Chapter  Google Scholar 

  • Moksnes P-O, Pihl L, van Montfrans J (1998) Predation on postlarvae and juveniles of the shore crab Carcinus maenas: importance of shelter, size and cannibalism. Mar Ecol Prog Ser 166:211–225

    Article  Google Scholar 

  • Nilsson J, Andersson J, Karås P, Sandström O (2004) Recruitment failure and decreasing catches of perch (Perca fluviatilis L.) and pike (Esox lucius L.) in the coastal waters of southeast Sweden. Boreal Environ Res 9:295–306

    Google Scholar 

  • Norkko J, Bonsdorff E, Norkko A (2000) Drifting algal mats as an alternative habitat for benthic invertebrates: Species-specific responses to a transient resource. J Exp Mar Biol Ecol 248:79–104. DOI 10.1016/S0022-0981(00)00155-6

    Article  CAS  Google Scholar 

  • Ojaveer E, Lindroth A, Bagge O, Lehtonen H, Toivonen J (1981) Fishes and fisheries. In: Voipio A (ed) The Baltic Sea. Elsevier, Amsterdam, pp 275–350

    Chapter  Google Scholar 

  • Ormerod SJ, Tyler SJ (1990) Assessments of body condition in dippers Cinclus cinclus: potential pitfalls in the derivation and use of condition indices based on body proportions. Ring Migr 11:31–41

    Article  Google Scholar 

  • Pedersen BH (1997) The cost of growth in young fish larvae, a review of new hypotheses. Aquaculture 155:259–269

    Article  Google Scholar 

  • Persson L, Crowder LB (1997) Fish-habitat interactions mediated via ontogenetic niche shifts. Ecol Stud Ser 131:3–23

    Google Scholar 

  • Pöyry J, Lindgren S, Salminen J, Kuussaari M (2005) Responses of butterfly and moth species to restored cattle grazing in semi-natural grasslands. Biol Cons 122:465–478

    Article  Google Scholar 

  • Roast SD, Widdows J, Pope N, Jones MB (2004) Sediment-biota interactions: Mysid feeding activity enhances water turbidity and sediment erodability. Mar Ecol Prog Ser 281:145–154

    Article  Google Scholar 

  • Rudstam LG, Hansson S, Larsson U (1986) Abundance, species composition and production of mysid shrimps in a coastal area of the northern Baltic proper. Ophelia Suppl 4:225–238

    Google Scholar 

  • Salovius-Laurén S (2004) Drifting and attached macroalgae: distribution, degradation and utility for macroinvertebrates. PhD Thesis, Åbo Akademi University, 36 p

  • Selén R (1999) Haukikannan muutokset läntisen Suomenlahden ulkosaaristossa 1939–1996 - Tutkimuskohteena Nothamnin saaristoalueen haukikanta (in Finnish). MSc Thesis, Univ Helsinki, 47 p

  • Sih A (1997) To hide or not to hide? Refuge use in a fluctuating environment. Trends Ecol Evol 12:375–376

    Article  CAS  Google Scholar 

  • Skov C, Berg S, Jacobsen L, Jepsen N (2002) Habitat use and foraging success of 0+ pike (Esox lucius L.) in experimental ponds related to prey fish, water transparency and light intensity. Ecol Freshwat Fish 11:65–73. DOI 10.1034/j.1600-0633.2002.00008.x

    Article  Google Scholar 

  • Skov C, Jacobsen L, Berg S (2003) Post-stocking survival of 0+ pike in ponds as a function of water transparency, habitat complexity, prey availability and size heterogeneity. J Fish Biol 62:311–322. DOI 10.1046/j.1095-8649.2003.00023.x

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. W.H. Freeman and Company, New York

    Google Scholar 

  • Vøllestad LA, Skurdal J, Qvenild T (1986) Habitat use, growth, and feeding of pike (Esox lucius L.) in four Norwegian lakes. Arch Hydrobiol 108:107–117

    Google Scholar 

  • Wallentinus I (1984) Comparisons of nutrient uptake rates for Baltic macro-algae with different thallus morphologies. Mar Biol 80:215–225. DOI 10.1007/BF02180189

    Article  CAS  Google Scholar 

  • Wennhage H, Pihl L (1994) Substratum selection by juvenile plaice (Pleuronectes platessa L.): impact of benthic microalgae and filamentous macroalgae. Neth J Sea Res 32:343–351

    Article  Google Scholar 

  • Werner EE, Gilliam JF, Hall DJ, Mittelbach GG (1983) An experimental test of the effects of predation risk on habitat use in fish. Ecology 64:1540–1548

    Article  Google Scholar 

  • Werner RG (2002) Habitat requirements. In: Fuiman LA, Werner RG (eds) Fishery science—the unique contributions of early life stages. Blackwell, Oxford, pp 161–182

    Google Scholar 

  • Wootton RJ (1984) A functional biology of sticklebacks. Croom Helm, London & Sidney

    Book  Google Scholar 

Download references

Acknowledgments

We wish to thank two reviewers for valuable comments on the manuscript. H. Strandberg gave us the pike larvae. M. Lehtiniemi taught us stomach analysis. M. Viitasalo purchased the fish tanks. A.-M. Åström weighed the algae. M. Öst showed us how to use the condition index and helped with statistical issues. J. Lindeberg was responsible for animal care. Tvärminne Zoological Station provided working facilities and accommodation. We greatly acknowledge funding from the Academy of Finland (to J.E.-Ö.) (project no. 202382), and Walter and Andrée de Nottbeck Foundation (to E.I.). The experiments comply with current laws of Finland. Animal welfare was respected during all stages of the study. Permission (no. 69–04) was granted by the Animal Care Committee at the University of Helsinki, Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonna Engström-Öst.

Additional information

Communicated by M. Kühl, Helsingør.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engström-Öst, J., Immonen, E., Candolin, U. et al. The indirect effects of eutrophication on habitat choice and survival of fish larvae in the Baltic Sea. Mar Biol 151, 393–400 (2007). https://doi.org/10.1007/s00227-006-0498-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-006-0498-7

Keywords

Navigation