Skip to main content
Log in

Uncommon diversity in developmental mode and larval form in the genus Macrophiothrix (Echinodermata: Ophiuroidea)

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Development mode in the ophiuroid genus Macrophiothrix includes an unusual diversity of planktonic larval forms and feeding types. The modes of development for seven congeners that coexist in coral reef habitats at Lizard Island, Australia were compared using larvae generated from crosses over several reproductive seasons from 1999 to 2003. Three species (Macrophiothrix koehleri Clark, Macrophiothrix longipeda Lamarck, Macrophiothrix lorioli Clark) develop from small eggs (<170 μm) into typical obligately feeding planktonic (planktotrophic) pluteus larvae with four larval arm pairs. The remaining four species develop from larger eggs (≥230 μm) into either facultatively-feeding or non-feeding (lecithotrophic) larval forms. The facultative planktotroph (Macrophiothrix rhabdota Clark) retains the ability to digest and benefit from food but does not require particulate food to complete metamorphosis. Among the lecithotrophic species, Macrophiothrix caenosa Hoggett retains the pluteus morphology with four pairs of larval arms, but is incapable of feeding, depending instead on maternal provisions for larval development. The remaining two lecithotrophs have simplified larval morphologies with only a single pair of full length (Macrophiothrix nereidina Lamarck) or highly reduced (Macrophiothrix belli Doderlein) larval arms and no functional mouth or gut. This genus includes the first example of facultative planktotrophy in ophiuroids, the first example in echinoderms of a complete pluteus morphology retained by a lecithotrophic larva, and three degrees of morphological simplification among lecithotrophic larval forms. Egg volume varies 20-fold among species and is related to variation in feeding mode, larval form, and development time, as predicted for the transition from planktotrophic to lecithotrophic development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alatalo P, Berg CJJ, D’Asaro CN (1984) Reproduction and development in the lucinid clam Codakia orbicularis. Bull Mar Sci 34:424–434

    Google Scholar 

  • Allen JA (1961) The development of Pandora inaequivalvis (Linne). J Embryol Exp Morphol 9:252–268

    CAS  PubMed  Google Scholar 

  • Arndt A, Marquez C, Lambert P, Smith MJ (1996) Molecular phylogeny of eastern Pacific sea cucumbers (Echinodermata: Holothuroidea) based on mitochondrial DNA sequences. Mol Phylogenet Evol 6:425–437

    Article  CAS  Google Scholar 

  • Berg CJ Jr, Alatalo P (1982) Reproductive strategies of bivalve mollusks from deep-sea hydrothermal vents and intertidal sulfide-rich environments. Biol Bull 163:397

    Google Scholar 

  • Chia FS (1974) Classification and adaptive significance of developmental patterns in marine invertebrates. Thalass Jugosl 10:121–130

    Google Scholar 

  • Crofts DR (1937) The development of Haliotis tuberculata with special reference to organogenesis during torsion. Phil Trans R Soc Lond B 228:219–268

    Article  Google Scholar 

  • Crump ML (1989) Life history consequences of feeding versus non-feeding in a facultatively non-feeding toad larva. Oecologia 78:486–489

    Article  CAS  Google Scholar 

  • Doughty P (2002) Coevolution of developmental plasticity and large egg size in Crinia georgiana tadpoles. Copeia 4:928–937

    Article  Google Scholar 

  • Emlet RB (1986) Facultative planktotrophy in the tropical echinoid Clypeaster rosaceus and a comparison with obligate planktotrophy in Clypeaster subdepressus (Clypeasteroida Echinoidea). J Exp Mar Biol Ecol 95:183–202

    Article  Google Scholar 

  • Emlet RB (1994) Body form and patterns of ciliation in nonfeeding larvae of echinoderms: functional solutions to swimming in the plankton? Am Zool 34:570–585

    Article  Google Scholar 

  • Emlet RB (1995) Developmental mode and species geographic range in regular sea urchins (Echinodermata: Echinoidea). Evolution 49:476–498

    Article  Google Scholar 

  • Emlet RB, McEdward LR, Strathmann RR (1987) Echinoderm larval ecology viewed from the egg. In: Jangoux M, Lawrence JM (eds) Echinoderm studies, vol 2. A. A. Balkema, Rotterdam, pp 55–136

  • Fell HB (1945) A revision of the current theory of echinoderm embryology. Trans Proc N Z Inst 75:73–101

    Google Scholar 

  • Fenaux L (1963) Note preliminaire sur le developpement larvaire de Amphiura chiajei (Forbes). Vie Milieu 14:91–96

    Google Scholar 

  • Grave C (1916) Ophiura brevispina. II. An embryological contribution and a study of the effect of yolk substance upon development and developmental processes. J Morphol 27:413–451

    Article  Google Scholar 

  • Grunbaum D, Strathmann RR (2003) Form, performance and trade-offs in swimming and stability of armed larvae. J Mar Res 61:659–691

    Article  Google Scholar 

  • Hart MW (1996a) Variation in suspension feeding rates among larvae of some temperate, eastern pacific echinoderms. Invertebr Biol 115:30–45

    Article  Google Scholar 

  • Hart MW (1996b) Evolutionary loss of larval feeding: development, form, and function in a facultatively feeding larva, Brisaster latifrons. Evolution 50:174–187

    Article  Google Scholar 

  • Hart MW (2000) Phylogenetic analyses of mode of larval development. Sem Cell Dev Biol 11:411–418

    Article  CAS  Google Scholar 

  • Hart MW, Podolsky RD (2005) Mitochondrial DNA phylogeny and rates of larval evolution in Macrophiothrix brittlestars. Mol Phylogenet Evol 34:438–447

    Article  CAS  Google Scholar 

  • Hart MW, Byrne M, Smith MJ (1997) Molecular phylogenetic analysis of life-history evolution in asterinid starfish. Evolution 51:1848–1861

    Article  Google Scholar 

  • Hendler G (1975) Adaptational significance of the patterns of ophiuroid development. Am Zool 15:691–715

    Article  Google Scholar 

  • Hendler G (1977) Development of Amphioplus abditus Echinodermata Ophiuroidea. Part 1: larval biology. Biol Bull 152:51–63

    Article  CAS  Google Scholar 

  • Hendler G (1979) Reproductive periodicity of ophiuroids (Echinodermata: Ophiuroidea) on the Atlantic and Pacific coasts of Panama. In: Stancyk SE (ed) Reproductive ecology of marine invertebrates. University of South Carolina Press, Columbia, pp 145–156

    Google Scholar 

  • Hendler G (1982) An echinoderm vitellaria with a bilateral larval skeleton: evidence for the evolution of ophiuroid vitellariae from ophioplutei. Biol Bull 163:405–530

    Article  Google Scholar 

  • Hendler G (1991) Echinodermata: Ophiuroidea. In: Giese AC, Pearse JS, Pearse VB (eds) Reproduction of marine invertebrates. Echinoderms and lophophorates, vol VI. Boxwood Press, Pacific Grove, pp 356–511

  • Hoggett A (1990) Taxonomy and systematic position of the brittlestar genus Macrophiothrix H. L. Clark (Echinodermata: Ophiuroidea). Dissertation, Brisbane, Australia

    Google Scholar 

  • Hoggett AK (1991) The genus Macrophiothrix (Ophiuroidae: Ophiotrichidae) in Australian waters. Invertebr Taxon 4:1077–1146

    Article  Google Scholar 

  • Jeffery CH, Emlet RB (2003) Macroevolutionary consequences of developmental mode in temnopleurid echinoids from the tertiary of southern Australia. Evolution 57:1031–1048

    Article  Google Scholar 

  • Jeffery WR, Swalla BJ (1992) Evolution of alternate modes of development in ascidians. Bioessays 14:219–226

    Article  CAS  Google Scholar 

  • Kelman D, Emlet RB (1999) Swimming and buoyancy in ontogenetic stages of the cushion star Pteraster tesselatus (Echinodermata: Asteroidea) and their implications for distribution and movement. Biol Bull 197:309–314

    Article  CAS  Google Scholar 

  • Kempf SC, Hadfield MG (1985) Planktotrophy by the lecithotrophic larvae of a nudibranch Phestilla sibogae Gastropoda. Biol Bull 169:119–130

    Article  Google Scholar 

  • Kempf SC, Todd CD (1989) Feeding potential in the lecithotrophic larvae of Adalaria proxima and Tritonia hombergi: an evolutionary perspective. J Mar Biol Assoc UK 69:659–682

    Article  Google Scholar 

  • Knowlton RE (1973) Larval development of the snapping shrimp Alpheus heterochaelis Say, reared in the laboratory. J Nat Hist 7:273–306

    Article  Google Scholar 

  • Kohn JA, Perron FE (1994) Life history and biogeography: patterns in Conus. Oxford University Press, Oxford

    Google Scholar 

  • Komatsu M, Shosaku T (1993) Development of the brittle star, Ophioplocus japonicus H. L. Clark. I. Zool Sci (Tokyo) 10:295–306

    Google Scholar 

  • Levin LA, Bridges TS (1995) Pattern and diversity in reproduction and development. In: McEdward LR (ed) Ecology of marine invertebrate larvae. CRC, Boca Raton, pp 1–48

    Google Scholar 

  • Levitan DR (2000) Optimal egg size in marine invertebrates: theory and phylogenetic analysis of the critical relationship between egg size and development time in echinoids. Am Nat 156:175–192

    Article  Google Scholar 

  • MacBride EW (1907) The development of Ophiothrix fragilis. Q J Microsc Sci 51:557–606

    Google Scholar 

  • McEdward LR (1985) An apparatus for measuring and recording the depth dimension of microscopic organisms. Trans Am Microsc Soc 104:194–200

    Article  Google Scholar 

  • McEdward LR (1986a) Comparative morphometrics of echinoderm larvae. II. Larval size, shape, growth, and the scaling of feeding and metabolism in echinoplutei. J Exp Mar Biol Ecol 96:267–286

    Article  Google Scholar 

  • McEdward LR (1986b) Comparative morphometrics of echinoderm larvae. I. Some relationships between egg size and initial larval form in echinoids. J Exp Mar Biol Ecol 96:251–265

    Article  Google Scholar 

  • McEdward LR (1996) Experimental manipulation of parental investment in echinoid echinoderms. Am Zool 36:169–179

    Article  Google Scholar 

  • McEdward LR, Herrera JC (1999) Body form and skeletal morphometrics during larval development of the sea urchin Lytechinus variegatus Lamarck. J Exp Mar Biol Ecol 232:151–176

    Article  Google Scholar 

  • McEdward LR, Miner BG (2001) Larval and life-cycle patterns in echinoderms. Can J Zool 79:1125–1170

    Article  Google Scholar 

  • McMillan WO, Raff RA, Palumbi SR (1992) Population genetic consequences of developmental evolution in sea urchins (genus Heliocidaris). Evolution 46:1299–1312

    PubMed  Google Scholar 

  • Miller SE (1993) Larval period and its influence on post-larval life history: comparison of lecithotrophy and facultative planktotrophy in the aeolid nudibranch Phestilla sibogae. Mar Biol 117:635–645

    Article  Google Scholar 

  • Mladenov PV (1979) Unusual lecithotrophic development of the Caribbean brittle-star Ophiotrix oerstedi. Mar Biol 55:55–62

    Article  Google Scholar 

  • Mladenov PV (1985) Development and metamorphosis of the brittle-star Ophiocoma pumila: evolutionary and ecological implications. Biol Bull 168:285–295

    Article  Google Scholar 

  • Morgan R, Jangoux M (2005) Larval morphometrics and influence of adults on settlement in the gregarious ophiuroid Ophiothrix fragilis (Echinodermata). Biol Bull 208:92–99

    Article  Google Scholar 

  • Mortensen T (1921) Studies of the development and larval forms of echinoderms. G. E. C. Gad, Copenhagen

    Book  Google Scholar 

  • Mortensen T (1938) Contributions to the study of the developmental and larval forms of echinoderms IV. Kong Danske Vidensk Selsk Skrift Nat Math Afd 9 Raekke 7:1–59

    Google Scholar 

  • Olson RR, Cameron JL, Young CM (1993) Larval development (with observations on spawning) of the pencil urchin Phyllacanthus imperialis: a new intermediate larval form? Biol Bull 185:77–85

    Article  CAS  Google Scholar 

  • Pernet B (2003) Persistent ancestral feeding structures in nonfeeding annelid larvae. Biol Bull 205:295–307

    Article  Google Scholar 

  • Perron FE (1981) Larval growth and metamorphosis of Conus (Gastropoda: Toxoglossa) in Hawaii. Pac Sci 35:25–38

    Google Scholar 

  • Rumrill SS (1990) Natural mortality of marine invertebrate larvae. Ophelia 32:163–198

    Article  Google Scholar 

  • Scheltema RS (1986) On dispersal and planktonic larvae of benthic invertebrates: an eclectic overview and summary of problems. Bull Mar Sci 39:290–322

    Google Scholar 

  • Selvakumaraswamy P, Byrne M (2000a) Reproduction, spawning, and development of 5 ophiuroids from Australia and New Zealand. Invertebr Biol 119:394–402

    Article  Google Scholar 

  • Selvakumaraswamy P, Byrne M (2000b) Vestigial ophiopluteal structures in the lecithotrophic larvae of Ophionereis schayeri (Ophiuroidea). Biol Bull 198:379–386

    Article  CAS  Google Scholar 

  • Selvakumaraswamy P, Byrne M (2004) Metamorphosis and developmental evolution in Ophionereis (Echinodermata: Ophiuroidea). Mar Biol 145:87–99

    Article  Google Scholar 

  • Sewell MA, Young CM (1997) Are echinoderm egg size distributions biomodal? Biol Bull 193:297–305

    Article  CAS  Google Scholar 

  • Sinervo B, McEdward LR (1988) Developmental consequences of an evolutionary change in egg size: an experimental test. Evolution 42:885–899

    Article  Google Scholar 

  • Smiley S, McEuen FS, Chaffee C, Krishnan S (1991) Echinodermata: Holothuroidea. In: Giese AC, Pearse JS, Pearse VB (eds) Reproduction of marine invertebrates. Echinoderms and lophophorates, vol VI . Boxwood Press, Pacific Grove, pp 663–750

  • Stancyk SE (1973) Development of Ophiolepis elegans (Echinodermata: Ophiuroidea) and its implications in the estuarine environment. Mar Biol 21:7–12

    Article  Google Scholar 

  • Strathmann MF (1987) Reproduction and development of marine invertebrates of the northern Pacific coast. University of Washington Press, Seattle

    Google Scholar 

  • Strathmann R (1974) The spread of sibling larvae of sedentary marine invertebrates. Am Nat 108:29–44

    Article  Google Scholar 

  • Strathmann RR (1985) Feeding and nonfeeding larval development and life-history evolution in marine invertebrates. Annu Rev Ecol Syst 16:339–361

    Article  Google Scholar 

  • Strathmann RR (1988) Larvae, phylogeny and von Baer’s law. In: Paul CRC, Smith AB (eds) Echinoderm phylogeny and evolutionary biology. Oxford Scientific Publications and Liverpool Geological Society, Oxford, pp 53–68

    Google Scholar 

  • Strathmann RR, Eernisse DJ (1994) What molecular phylogenies tell us about the evolution of larval forms. Am Zool 34:502–512

    Article  Google Scholar 

  • Thorson G (1950) Reproductive and larval ecology of marine bottom invertebrates. Biol Rev 25:1–45

    Article  CAS  Google Scholar 

  • Wray GA (1996) Parallel evolution of nonfeeding larvae in echinoids. Syst Biol 45:308–322

    Article  Google Scholar 

  • Yamashita M (1988) Involvement of cyclic AMP in initiating maturation of the brittle-star Amphipholis kochii oocytes: induction of oocyte maturation by inhibitors of cyclic nucleotide phosphodiesterase and activators of adenylate cyclase. Dev Biol 125:109–114

    Article  CAS  Google Scholar 

  • Young CM (1990) Larval ecology of marine invertebrates: a sesquicentennial history. Ophelia 32:1–48

    Article  Google Scholar 

Download references

Acknowledgments

We thank J. Mader and J. McAlister for extensive assistance and discussions, R. Miller, K. Kemp, G. Howarth, R. Lynch, D. Allen, L. Hawkins, L. Haycock, B. Hazel, M. Pizer and T. Holtz for aid with adult brittlestar collection and larval culture, and D. Gupta for help with larval measurements. We thank the directors of the Lizard Island Research Station, A. Hoggett and L. Vail, for generous research space and logistical support. The manuscript was improved by comments from J. Grassle and two anonymous reviewers. Funding was provided by the PADI foundation and by National Science Foundation grant OCE-9811121. Collection, maintenance, and handling of brittlestars conformed with permits issued by the Great Barrier Reef Marine Park Authority.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Podolsky.

Additional information

Communicated by J.P. Grassle, New Brunswick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allen, J.D., Podolsky, R.D. Uncommon diversity in developmental mode and larval form in the genus Macrophiothrix (Echinodermata: Ophiuroidea). Mar Biol 151, 85–97 (2007). https://doi.org/10.1007/s00227-006-0470-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-006-0470-6

Keywords

Navigation