Marine Biology

, Volume 150, Issue 5, pp 773–782 | Cite as

Ingestion of pico- and nanoplankton by the Mediterranean red coral Corallium rubrum

  • Marialucia Picciano
  • Christine Ferrier-PagèsEmail author
Research Article


This study investigates the feeding behaviour of the precious red coral Corallium rubrum on bacterioplankton. The effects of flow rate, prey concentration, and seawater temperature were tested. The results obtained show that C. rubrum was able to prey on both pico- and nanoplankton cells. Flagellates constituted the major bacterioplankton food source in terms of carbon and nitrogen, representing from 43 to 70% of the C and N ingested. Flow speed (2, 6, and 11 cm s−1) had no effect on grazing rates, maybe due to the small size of the ingested particles. Conversely, feeding rates increased with prey concentration and seawater temperature. There was a doubling of the picoplankton ingestion rate for a sixfold increase in its concentration. The ingestion of autotrophic flagellates, however, increased at the same time as their concentration, indicating a preference for this type of food. Considering the range of concentrations typically found in the Ligurian Sea, the ingestion of pico- and nanoplankton brings 148 ng C polyp−1 day−1 and 28 ng N polyp−1 day−1. This type of food represents only ca. 4.5% of the total carbon gained by C. rubrum from the different sources, but might be the most important in terms of nitrogen, phosphorus, and other essential elements.


Ingestion Rate Heterotrophic Bacterium Experimental Chamber Seawater Temperature Soft Coral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank Prof. D. Allemand (CSM) and Prof. L. Montaggioni (Univ. Aix-Marseille I) for their support in this work, which is part of the PhD thesis of M.P. funded by the French Ministry of Foreign Affairs and the Centre Scientifique de Monaco. We also thank two anonymous reviewers for their constructive comments.


  1. Abbiati M, Buffoni G, Caforio G, Di Cola G, Santangelo G (1992) Harvesting, predation and competition effects of the red coral population. Neth J Sea Res 30:219–228CrossRefGoogle Scholar
  2. Abel EF (1970) Uber den tentakelapparat der Edelkoralle (Corallium rubrum L.) und seine function beim beutefangverhalten. Oecologia 4:133–142CrossRefGoogle Scholar
  3. Allemand D, Benazet-Tambutté S (1996) Dynamics of calcification in the Mediterranean red coral Corallium rubrum (Linnaeus) (Cnidaria, Octocorallia). J Exp Zool 276:270–278CrossRefGoogle Scholar
  4. Anthony KRN (1999) Coral suspension feeding on fine particulate organic matter. J Exp Mar Biol Ecol 232:85–106CrossRefGoogle Scholar
  5. Bramanti L, Magagnini G, De Maio L, Santangelo G (2005) Recruitment, early survival and growth of the Mediterranean red coral Corallium rubrum (L 1758), a 4-year study. J Exp Mar Biol Ecol 314:69–78CrossRefGoogle Scholar
  6. Bratbak G (1987) Carbon flow in an experimental microbial ecosystem. Mar Ecol Prog Ser 36:267–276CrossRefGoogle Scholar
  7. Bouillon J (1995) Classe des hydrozoaires. In: Grassé PP (ed) Traité de Zoologie: Cnidaires, Hydrozoaires, Scyphozoaires, Cubozoaires, Cténaires. Masson, Paris, pp 29–416Google Scholar
  8. Caron DA, Dam HG, Kremer P, Lessard EJ, et al (1995) The contribution of microorganisms to particulate carbon and nitrogen in surface waters of the Sargasso Sea near Bermuda. Deep Sea Res I 42:943–972CrossRefGoogle Scholar
  9. Christaki U, Giannakourou A, Van Wambecke F, Gregori G (2001) Nanoflagellate predation on auto- and heterotrophic picoplankton in the oligotrophic Mediterranean Sea. J Plankton Res 23(11):1297–1310CrossRefGoogle Scholar
  10. Coma R, Gili JM, Zabala M, Riera T (1994) Feeding and prey capture cycles in the aposymbiotic gorgonian Paramuricea clavata. Mar Ecol Prog Ser 115:267–270CrossRefGoogle Scholar
  11. Coma R, Ribes M, Orejas C, Gili JM (1999) Prey capture by a benthic coral reef hydrozoan. Coral Reefs 18:141–145CrossRefGoogle Scholar
  12. Fabricius KE, Genin A, Benayahu Y (1995) Flow-dependent herbivory and growth in zooxanthellae-free soft corals. Limnol Oceanogr 31:878–887Google Scholar
  13. Fabricius KE, Yahel G, Genin A (1998) In situ depletion of phytoplankton by an azooxanthellate soft coral. Limnol Oceanogr 43(2):354–356CrossRefGoogle Scholar
  14. Ferrier-Pagès C, Leclercq N, Jaubert J, Pelegri S (2000) Coupling between corals and microbes: enhancement of pico- and nanoplankton growth by coral exudates. Aquat Microb Ecol 21:203–209CrossRefGoogle Scholar
  15. Garrabou J, Harmelin JG (2002) A 20-year study of life history traits of a harvested long-lived temperate coral in NW Mediterranean: insights into conservation and management needs. J Anim Ecol 71:966–968CrossRefGoogle Scholar
  16. Giannini F, Gili JM, Santangelo G (2003) Relationships between the spatial distribution of red coral Corallium rubrum and coexisting suspension feeders at Medas Islands Marine Protected areas (Spain). Ital J Zool 70:233–239CrossRefGoogle Scholar
  17. Gili JM, Coma R (1998) Benthic suspension feeders: their paramount role in littoral marine food webs. Trends Ecol Evol 13:316–321CrossRefGoogle Scholar
  18. Grémare A, Amouroux JM, Charles F, Dinet A, Riaux-Gobin C, Baudart J, Medernach L, Bodiou JY, Vétion G, Colomines JC, Albert P (1997) Temporal changes in the biochemical composition and nutritional value of the particulate organic matter available to surface deposit-feeders: a two-year study. Mar Ecol Prog Ser 150:195–206CrossRefGoogle Scholar
  19. Gundersen K, Heldal M, Nordland S, Purdie DA, Knap AH (2002) Elemental C, N, and P cell content of individual bacteria collected at the Bermuda Atlantic Time series Study (BATS) site. Limnol Oceanogr 47:782–790CrossRefGoogle Scholar
  20. Houlbrèque F, Tambutté E, Richard C, Ferrier-Pagès C (2004) Importance of the micro-diet for scleractinian corals. Mar Ecol Prog Ser 282:151–160CrossRefGoogle Scholar
  21. Jochem F (1988) On the distribution and importance of pico-cyanobacteria in a boreal inshore area (Kiel Bight, Western Baltic). J Plankton Res 10:1009–1022CrossRefGoogle Scholar
  22. Lehman JT (1976) The filter-feeder as an optimal forager and the predicted shapes of feeding curves. Limnol Oceanogr 21:501–516CrossRefGoogle Scholar
  23. Levy O, Mizrahi L, Chadwick-Furman NE, Achituv Y (2001) Factors controlling the expansion behaviour of Favia favus (Cnidaria: Scleractinia). Effects of light, flow and planktonic prey. Biol Bull 200:118–126CrossRefGoogle Scholar
  24. Lewis JB (1982) Feeding behaviour and feeding ecology of the octocorallia (Coelenterata: Anthozoa). J Zool Lond 196:371–384CrossRefGoogle Scholar
  25. Marsh JA Jr (1970) Primary productivity of reef building calcareous red algae. Ecology 51:255–263CrossRefGoogle Scholar
  26. Pile AJ, Patterson MR, Witman JD (1996) In situ grazing on plankton < 10 μm by the boreal sponge Mycale lingua. Mar Ecol Prog Ser 88:9–17Google Scholar
  27. Piniak GA (2002) Effects of symbiotic status, flow speed, and prey type on prey capture by the facultatively symbiotic temperate coral Oculina arbuscula. Mar Biol 141:449–455CrossRefGoogle Scholar
  28. Platt T, Rao DVS, Irwin B (1983) Photosynthesis of picoplankton in the oligotrophic ocean. Nature 301:702–704CrossRefGoogle Scholar
  29. Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948CrossRefGoogle Scholar
  30. Ribes M, Coma R, Gili JM (1998) Heterotrophic feeding by gorgonian corals with symbiotic zooxanthellae. Limnol Oceanogr 43:1170–1179CrossRefGoogle Scholar
  31. Ribes M, Coma R, Gili JM (1999a) Heterogenous feeding in benthic suspension feeders: the natural diet and grazing rate of the temperate gorgonian Paramuricea clavata (Cnidaria: Octocorallia) over a year cycle. Mar Ecol Prog Ser 183:125–137CrossRefGoogle Scholar
  32. Ribes M, Coma R, Gili JM (1999b) Seasonal variations of POC, DOC, and the contribution of microbial communities to the live POC in a shallow near-bottom ecosystem of the North-western Mediterranean Sea. J Plankton Res 21:1077–1100CrossRefGoogle Scholar
  33. Ribes M, Coma R, Rossi S (2003) Natural feeding of the temperate asymbiotic octocoral-gorgonian Leptogorgia sarmentosa (Cnidaria: Octocorallia). Mar Ecol Prog Ser 254:141–150CrossRefGoogle Scholar
  34. Rossi S, Ribes M, Coma R, Gili JM (2004) Temporal variability in zooplankton prey capture rate of the passive suspension feeder Leptogorgia sarmentosa (Cnidaria: Octocorallia), a case study. Mar Biol 144:89–99CrossRefGoogle Scholar
  35. Santangelo G, Abbiati M (2001) Red coral: conservation and management of an overexploited Mediterranean species. Aquat Conserv Mar Freshw Ecosyst 11:253–259CrossRefGoogle Scholar
  36. Santangelo G, Abbiati M, Giannini F, Cicogna F (1993) Red coral fishing trends in the western Mediterranean Sea. Sci Mar 57:139–143Google Scholar
  37. Santangelo G, Carletti E, Maggi E, Bramanti L (2003) Reproduction and population sexual structure of the over-exploited Mediterranean red coral Corallium rubrum. Mar Ecol Prog Ser 248:99–108CrossRefGoogle Scholar
  38. Sebens KP, Vandersall KS, Savina LA, Graham KR (1996) Zooplankton capture by two scleractinian corals, Madracis mirabilis and Montastrea cavernosa, in a field enclosure. Mar Biol 127:303–317CrossRefGoogle Scholar
  39. Sebens KP, Witting J, Helmuth B (1997) Effects of water flow and branch spacing on particle capture by the reef coral Madracis mirabilis (Duchassing and Michelotti). J Exp Mar Biol Ecol 211:1–28CrossRefGoogle Scholar
  40. Sheldon RW, Rassoulzadegan F (1987) A method for measuring plankton production by particle counting. Mar Microbiol Food Webs 2(1):29–44Google Scholar
  41. Shimeta J (1993) Diffusional encounter of submicrometer particles and small cells by suspension feeders. Limnol Oceanogr 38(2):456–465CrossRefGoogle Scholar
  42. Shimeta J, Jumars PA (1991) Physical mechanisms and rates of particle capture by suspension-feeders. Oceanogr Mar Biol Annu Rev 29:191–257Google Scholar
  43. Shimeta J, Koehl MAR (1997) Mechanisms of particle selection by tentaculate suspension feeders during encounter, retention, and handling. J Exp Mar Biol Ecol 209:47–73CrossRefGoogle Scholar
  44. Shimeta J, Witucki PF, Hippe KR (2004) Influences of nutritional state and temperature on suspension-feeding rates and mechanics in the spionid polychaete Polydora cornuta. Mar Ecol Prog Ser 280:173–180CrossRefGoogle Scholar
  45. Smith PK, Krohn RI, Hermanson GT, Mallia AK, et al (1985) Measurement of protein using bicinchronic acid. Anal Biochem 150:76–85CrossRefGoogle Scholar
  46. Stockner JG, Antia NJ (1986) Algal picoplankton from marine and freshwater ecosystems: a multidisciplinary perspective. Can J Fish Aquat Sci 43:729–741CrossRefGoogle Scholar
  47. Trager GC, Hwang JS, Strickler JR (1990) Barnacle suspension-feeding in variable flow. Mar Biol 105:117–127CrossRefGoogle Scholar
  48. True MA (1970) Etude quantitative de quatre peuplements sciaphiles sur substrat rocheux dans la region marseillaise. Bull Inst Oceanogr Monaco 69:1–48Google Scholar
  49. Tsounis G, Rossi S, Laudien J, Bramanti L, Fernàndez N, Gili J-M, Arntz W (2005) Diet and seasonal prey capture rates in the Mediterranean red coral (Corallium rubrum L.). Mar Biol (online first)Google Scholar
  50. Tsounis G, Rossi S, Aranguren M, Gili J-M, Arntz W (2006) Effects of spatial variability and colony size on the reproductive output and gonadal development cycle of the Mediterranean red coral (Corallium rubrum L.). Mar Biol 148:513–527CrossRefGoogle Scholar
  51. Vedel A (1998) Phytoplankton depletion in the benthic boundary layer caused by suspension-feeding Nereis diversicolor (Polychaeta): grazing impact and effect of temperature. Mar Ecol Prog Ser 163:125–132CrossRefGoogle Scholar
  52. Verity PG, Williams SC, Hong Y (2000) Formation, degradation, and mass:volume ratios of detritus derived from decaying phytoplankton. Mar Ecol Prog Ser 207:53–68CrossRefGoogle Scholar
  53. Yukihira H, Lucas JS, Klumpp DW (2000) Comparative effects of temperature on suspension feeding and energy budgets of the pearl oysters Pinctada margaritifera and P. maxima. Mar Ecol Prog Ser 195:179–188CrossRefGoogle Scholar
  54. Zibrowius H, Montero M, Grashoff M (1984) La repartition de Corallium rubrum dans l’Atlantique. Thetis 11:163–170Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Centre de Sédimentologie-Paléontologie FRE 2761—Dynamique des Récifs et des Plates-Formes CarbonatésUniversité de ProvenceMarseille Cedex 3France
  2. 2.Centre Scientifique de MonacoMonacoPrincipality of Monaco

Personalised recommendations